Posted on

AmericanHort technology tour to visit Hort Americas hydroponic research greenhouse

Tour of Hort Americas research and demonstration greenhouse in Dallas will show growers different hydroponic production systems for various vegetable crops.

Growers of hydroponic vegetables or those considering starting growing vegetables hydroponically should plan on attending the AmericanHort Production Technology Conference. Scheduled for Oct. 9-11 in Dallas, the conference begins with a Technology in Action Tour on Oct. 9 which will visit three local production operations: Hort Americas research and demonstration greenhouse, Seville Farms and Southwest Nursery.

 

All things hydroponic

Hort Americas, a horticulture and agriculture wholesale supply company, has retrofitted a 12,000-square-foot floriculture greenhouse for the hydroponic production of vegetable crops. Tyler Baras, who is the special projects manager at Hort Americas, is overseeing the trialing of five different production systems along with the testing of potential products for the company’s online catalog. The production systems include: nutrient film technique (NFT), deep water culture floating raft, a vertical hydroponic tower system, a flood-and-drain vertical rack system and a new capillary mat manufactured in Europe. The greenhouse is being used to grow a wide variety of lettuces, leafy greens, herbs and microgreens.

During the AmericanHort Technology in Action Tour on Oct. 9, Tyler Baras, special projects manager at Hort Americas, will be talking about the five different hydroponic production systems he is trialing.
Photos courtesy of Tyler Baras

The NFT system uses a new channel design. Baras said the narrower channels allow for the aging of crops without having to physically move plants from nursery channels to finishing channels.

Hort America’s main floating raft deep water system is an in-house custom design that measures 32-feet by 28-feet.

“We have tried using a Venturi system to incorporate oxygen, but for the last two months we have been doing trials with compressed liquid oxygen,” Baras said. “We have been doing trials to see how plants respond to increased levels of dissolved oxygen. This deep water system hasn’t been flushed in over a year.

“We have been managing the nutrient solution with water tests and individual salts. Instead of using a standard N-P-K fertilizer like we have been using in the other production systems, we have really focused on water tests and making nutrient adjustments based on those tests. We have been trying to keep the nutrients within a target range and trying to run the system for as long as possible without having to flush any of the nutrient system. We are testing for all of the essential nutrients. We are also looking at sodium chloride levels and seeing how those accumulate. Also, we are tracking what essential nutrients accumulate over time and how we can adjust the fertilizer being added to accommodate the natural accumulation in the system.”

In addition to trialing crops in different hydroponic production systems, Tyler Baras is also studying a variety of crops grown with conventional and organic substrates and fertilizers.

 

Baras is also studying how the water source can contribute to the nutrient level.

“We are considering how source water may be a limitation to applying this no-flush technique,” he said. “Our source water is municipal water, but it has a high sulfur content of about 44 parts per million. So we are looking at cutting out all sulfur inputs. We are learning the challenges of trying to manage a no flush system.”

In addition to the main deep water system, Baras said tour attendees will also see several smaller deep water culture systems.

“In these smaller deep water culture systems we will be showing the use of three different organic fertilizers where we are comparing the growth between them,” he said. “We will also be showing a smaller scale deep water culture system receiving aeration compared to one with no aeration.”

 

Vertical production systems

Another hydroponic system that Baras is working with is a vertical tower commonly used by smaller growers.

“We have a lot of customers who use this system so we decided to install one in the greenhouse so we could look at some of the issues that they are dealing with,” he said. “We also were looking to answer some of the questions that our customers had about using the system. An example is can this system be used to grow organically? We’ve done both organic and conventional trials with this system.

“We’ve also been looking at what crops perform best in this vertical system. We’ve done a lot of variety trials as well as with the other systems we’ve installed.”

Hort Americas is also trialing a vertical Growrack from Growtainer.

“This is a flood-and-drain vertical rack system,” Baras said. “The rack has three levels, but it could be expanded. The rack has a 2-foot by 5-foot footprint. We have equipped it with GE LED lights. This would be the type of system used in a vertical farm setup.”

Although the Growrack hydroponic system can be used to grow full size crops, Tyler Baras is using it primarily for seedling propagation.

Baras said the Growrack system, which is set up in the greenhouse, has done well in warm conditions because its water reservoir is below the rack.

“The reservoir is usually stored underneath the racks so it is in shade,” he said. “The water isn’t always in the trays so it doesn’t collect the heat from the trays. It works well in warm climates.”

Although Baras has grown full size crops in the Growrack, it is being used now primarily for seedling propagation.

“The focus of the system is how it has enabled us to cut back on the amount of space that is needed for propagation,” he said. “We can easily grow enough seedlings in this system for a 10,000-square foot greenhouse.

“The system is also being used by a Central Market store in Dallas to finish crops for its Growtainer farm. We helped consult on the management of the system and showed store officials how it could grow crops from start to finish in the same Growracks. The store is growing fully mature butterhead lettuce and basil in the system. This system can definitely work in indoor vertical farms.”

Baras said he has grown both organically and conventionally with the Growrack system.

“We have done organic seedling propagation in it,” he said. “We have used a variety of conventional and organics substrates and fertilizers with it.”

 

LED studies

In addition to trialing LED lights vs. natural light for greenhouse seedling propagation and crop staging, Baras said he is also looking at using LEDs supplemental light throughout the production of butterhead lettuce in the floating raft system.

“We are looking at how LED light affects leaf texture and plant morphology of butterhead lettuce,” he said. We are trying supplemental lighting during the summer. We are pulling shade so the light isn’t very intense. It appears that intense light can lead to tip burn that damages the plants leading to a poor quality crop. So we pull shade cloth and then run a prototype high-output LED grow light provided by GE for almost 20 hours. We deliver a low intensity of light over a longer period so we can provide the plants the light they need without stressing them. We are trying to improve the quality by adding LED light in order to produce more compact growth that is associated with LEDs.

“Under greenhouse shade cloth the lettuce leaves look fragile. We are trying to grow the lettuce to hit a certain weight. If the plants are grown under shade they look fairly large and floppy and the head doesn’t have the right density at its core. By using the LEDs we can produce the more traditional morphology where the plants have a dense core. The leaves aren’t floppy and the plants look more like traditional butterhead should look.”

 

Matching plants and production systems

Baras said he is trialing a wide range of crops in all of the production systems he is using.

“Primarily we are focused on lettuce and basil, but we are trialing a lot of varieties,” he said. “We definitely see some systems are capable of growing some varieties that other systems are not. We want to be able to recommend what varieties grow best in what systems. We are preparing a book based on our research that will include an entire section on strategies for how to use these production systems. We will provide example situations in the book discussing location, climate, market, what crops are being requested by that market and how to use that information to determine what production system is most appropriate.

“We are looking at primarily butterhead, romaine and oakleaf lettuce and 20 different basil varieties. We are also doing trials with arugula, spinach, cilantro, kale, chard, Asian greens and microgreens. We are doing an extensive study of herb varieties. There are also some unusual crops like stevia, wasabi arugula, celeriac and sorrel. We are determining all of these plants growth habits in the different production systems. This information will be in the book along with the details and nuances of growing each crop.”

A vertical hydroponic tower commonly used by smaller growers has been installed to answer some of the questions that Hort Americas customers have about using the system.

Based on the trial results, Baras said the book will provide details on each plant variety and its performance in each system.

“The book will provide information on the growth a grower should expect in different environments based on the amount of light and temperature,” he said. “The book will offer projected production numbers a grower should be able to reach. These will be realistic targets for each of the production systems we have studied.”

 


For more: Hort Americas, (469) 532-2383; http://hortamericas.com.

 

David Kuack is a freelance technical writer in Fort Worth, Texas; dkuack@gmail.com.

Posted on

Organic vs. traditional hydroponic production: the top 3 differences

When it comes to changing from conventional to organic hydroponic production methods, there are three main areas that growers find most challenging.

Tyler Baras, special projects manager at Hort Americas in Bedford, Texas, said growers are increasingly inquiring about organic hydroponic production. Baras is running hydroponic production trials comparing organic and conventional production methods in a 12,000-square-foot research and demonstration greenhouse in Dallas.

“We’re doing the research because of market demand,” he said. “A lot of growers are getting feedback from their customers that they would prefer to have produce that is certified organic. Produce suppliers and brokers hear from the grocery stores and then they bring those requests to the growers.

 

Tyler Baras, special projects manager at Hort Americas, is comparing organic and conventional hydroponic production methods using a variety of edible crops.
Photos courtesy of Tyler Baras

 

“We don’t necessarily believe that produce grown with organic production methods is superior. We believe in conventional production methods as well. What we are trying to do is provide as many options to our customers as possible.”

Baras said that organic production is a whole system that includes substrates, fertilizers and pest management. But most of the questions coming from growers about organic production are related to fertilizers.

 

  1. Inoculants and tank culturing

Baras said an advantage of traditional fertilizers is all of the research that has been conducted on them has enabled growers to target exact nutrient profiles for specific crops.

“Research has enabled traditional fertilizers to come down to fairly exact levels,” he said. “Growers are able to figure out exactly how many parts per million of each nutrient they want to put into nutrient solutions. The chemistry allows them to be that exact.

“Organic fertilizers are a little trickier because there isn’t the precision targeting each nutrient. Generally there are inputs that are going to have several nutrients in them. Growers don’t have the ability to adjust individual nutrients as easily.”

Another issue with many commercial organic fertilizers is they are animal-derived. These organic fertilizers include manures, bone meal, blood meal and feather meal.

“These animal-based organic fertilizers don’t mix well with water,” Baras said. “If growers are using recirculating hydroponic systems, these animal-based fertilizers tend to start going rancid and smell in a few days. These fertilizers can also form a sludge that can clog irrigation lines and emitters.”

Baras has focused his research trials on Pre-Empt, a plant-derived organic fertilizer which has blackstrap molasses as its major component. He has been comparing organic vs. traditional fertilizers in several hydroponic production systems, including flood-and-drain grow racks, two different nutrient film technique (NFT) systems, deep water culture floating rafts and a ZipGrow Tower system.

“We have successfully grown butterhead lettuce and basil in all of these systems using organic inputs,” he said. “We have several other crops that we are running through these systems in smaller trials, including spinach, cilantro, arugula, strawberries and other lettuce and herb varieties. Most of research is still focused on butterhead lettuce and basil.

“We currently don’t have any trials going with microgreens, but some of our first trials were with microgreens under LED lights using organic substrates and organic fertilizers. We definitely proved that is a viable production system.”

Baras said he knows of growers using Pre-Empt organic fertilizer who haven’t flushed their nutrient solution tanks for five months.

“The key is the slow development of the fertilizer tank,” he said. “Some growers have immediately added the organic fertilizer to their reservoir at full strength and they quickly notice that their tank starts to foam at the top and starts to smell similar to what happens with animal-based organic fertilizers. We’ve found if an initial charge, about half the target rate, is added first, along with a microbial inoculant at the same time, these issues can be avoided. We are using Terra Bella as the microbial inoculant because it has an extensive profile of different microbes.”

Baras said the half rate of fertilizer and microbial inoculant are run through the system for about two weeks.

“Once the microbial population becomes established, the nutrient solution in the tank can be brought up to full strength without any foaming or odors,” he said.

 

  1. Nutrient solution pH management

Baras said one of the major issues with the organic nutrient solution during the first two weeks is pH swings.

“The pH of the nutrient solution on the first day the organic fertilizer is added to the tank is in a good range around 6-6.5,” he said. “Within a couple days of adding the fertilizer, the nutrient solution pH shoots up to around 8.0. There are a lot of plants that do not like a high pH. Iron-inefficient crops like basil have a hard time taking up iron at a high pH. There will be a lot of chlorosis at the top of the plants. This happens within a couple days of the pH going above 7.

“During the second week the pH drops to between 4 to 5. The plants continue to grow, there are a lot of nutrients in the solution, but the quality is very different. During the third week the pH stabilizes. As the microbial population stabilizes, the pH stabilizes around 5.5-6.5, which is ideal for leafy greens.”

Baras said growers have taken two routes to stabilize the nutrient solution pH.

“There are growers who will let the solution go for this two-week swing and let the solution stabilize similar to what we have been doing,” he said. “Other growers are trying to control the pH with inputs. When the pH goes up they will add citric acid. When the pH starts to drop they will add sodium bicarbonate.

“The inputs to adjust the pH are very limited. The main downfall with citric acid is that it is anti-microbial. So although a grower is able to lower the pH, it’s not good for the microbial population. Another option is vinegar, but most commercial growers are using citric acid for controlling pH for organic production.”

Baras said the options for raising the pH are also limited.

“Growers would like to use potassium bicarbonate, but potassium bicarbonate is not allowed for pH management under the organic rules,” he said. “Potassium bicarbonate can be used to control powdery mildew, but it can’t be used to control pH in the nutrient solution tank. What growers are left with is sodium bicarbonate or baking soda. The pH can be raised, but over time sodium accumulates. Once a certain threshold of sodium is reached then problems start to occur including nutrient disorders.”

Baras said another issue with using citric acid and sodium bicarbonate for pH management is the longevity of the nutrient tank solution is shortened.

“It could be a couple months, but at some point the sodium levels are so high that either the whole solution or part of the solution is going to have to be dumped,” he said. “The tank is going to have to be flushed. The amount of citric acid and sodium bicarbonate added can be done in small increments, but it is the accumulation that causes problems.”

Baras said once the nutrient solution stabilizes, the swings in pH won’t be as drastic when additional water and fertilizer are added to the tank.

Another option for controlling pH includes adding more water or fertilizer.

“Depending on the water source, adding water to the tank can sometimes raise the pH,” Baras said. “Also, the Pre-Empt fertilizer is somewhat acidic and that could be used to lower the pH simply by adding more fertilizer.”

 

  1. EC targets and nutrient analysis

Baras said growers who switch to organic production systems should continue to measure the electrical conductivity (EC) of the nutrient solution to determine soluble salts levels.

“A lot of the nutrients in organic fertilizers won’t register on EC readings because of the forms they are in,” he said. “They aren’t yet broken down into simple salts. If growers are basing their feedings solely on EC readings, the EC of the nutrient solution will probably read much lower even when sufficient nutrients are being provided to the crop.

“The specific makeup of the nutrient profile, how many parts per million of each nutrient, for organic and conventional fertilizers are not the same. I don’t target the same nutrient profile for an organic nutrient solution that I do with conventional nutrient solutions.”

 

Butterhead lettuce and basil have been grown successfully in Hort Americas’ research greenhouse using several hydroponic production systems and organic inputs.

 

 

Baras said plants are fairly flexible on many of the nutrients, which can be maintained within a fairly wide range.

“With organics, sometimes the calcium level may only be 100 parts per million where with conventional fertilizers the target calcium level for most leafy greens is around 200 ppm,” he said. “But even at 100 ppm calcium with an organic fertilizer, we are not seeing the issues that we would expect from having a low calcium level.”

Baras said for fruiting crops like tomatoes, calcium can be an issue with organic production.

“Calcium sulfate is an amendment that can be used to correct calcium deficiency,” he said. “Another nutrient that can be low with plant-based organic fertilizers is magnesium. What we have found is nutrients like calcium and magnesium that are usually lacking in the organic fertilizer we are using, they are generally found in the source water of most growers.

“In our research greenhouse the source water contains 30 ppm magnesium and 30 ppm calcium. Those can make a fairly significant contribution to the nutrient solution, especially with calcium that isn’t taken up as quickly as other nutrients. Over time the calcium level accumulates in the fertilizer tank. As the organic nutrient solution is used over several months, the calcium level rises and nearly reaches the conventional target of 200 ppm calcium. Like calcium, magnesium generally rises over time with source water contributions.”

 

Measuring changing EC levels

Baras said that he uses an EC meter to get an estimate of the soluble salts level in the organic nutrient solution.

“For lettuce the EC of the nutrient solution in the greenhouse for conventional production is usually run at 2-2.3,” he said. “For organic lettuce production I typically run an EC between 1.2-1.6. I make sure that the crop has the nutrients close to the target range by sending water samples to a testing lab to get an exact analysis. But even that has some issues with organic production.

“I’ve found that the amount of time a nutrient solution sample sits after it is sent out can affect the nutrient analysis from the lab. Since nutrient solution microbes are constantly active, changes can occur within the sample. Initially a sample sent to a lab may have 100 ppm nitrogen. But a few days later the same sample may indicate there is 150 ppm nitrogen.”

Baras has sent the same samples to multiple labs and he has received analyses with significant variations, especially with nitrogen. He suggests growers stick with one lab.

“If there is a lab that is relatively close to a grower’s operation, this can help ensure that results are returned relatively quickly,” he said. “The best practice is for growers to create their own archive of the nutrient analyses so that they can compare test results to previous notes. Lab test results are likely mimicking what is happening in the nutrient solution tank. The microbes’ activities are also affected by temperature the solution is stored at as well. The readings could come out higher or lower.

“There are different factors that can affect the EC including the temperature and the crop stage when a water sample is taken. Crop age, whether plants are young or mature, whether there is a well-developed root system along with the crop itself, impact the interaction with the nutrient solution. These can affect the form the nutrients are in and how that would read out on a nutrient analysis.”

Baras said how often an EC analysis should be done depends on how large the reservoir is and how often water is added to the reservoir.

“A small reservoir that is frequently amended with water should be tested fairly often,” he said. “Nutrients can quickly accumulate in a small reservoir. Growers with a small reservoir might be testing every week. With a large reservoir used for deep water culture that may contain 8,000 gallons of water, it is not as urgent to test as frequently.”

For more: Hort Americas, (469) 532-2383; http://hortamericas.com.

 

David Kuack is a freelance technical writer in Fort Worth, Texas; dkuack@gmail.com.

Posted on

Maintaining the optimum temperature, oxygen and beneficial microbe levels are integral in hydroponic systems

Hydroponic floating raft lettuce

While providing the proper soluble salts and pH levels are important in hydroponic systems, don’t overlook the significance of maintaining the optimum temperature, oxygen concentration and microbe level in the nutrient solution.

Maintaining the proper soluble salts (electrical conductivity) level and pH are critical in hydroponic systems like nutrient film technique and floating rafts. While monitoring these properties are important, growers should not overlook the importance that temperature, oxygen level and microbial activity play in the growth of plants in these production systems.

“It’s not as much about maintaining root health as it is about managing the conditions in the rhizosphere, which is the region around the plant roots,” said Rosa Raudales, assistant professor of horticulture and greenhouse extension specialist at the University of Connecticut. “The area around the roots undergoes a lot of biological and chemical activity. Microorganisms in the rhizosphere feed on the exudate of the roots. Managing the rhizosphere and the conditions in the nutrient solution are critical to maintaining plant health.”

 

Hydroponic root system health, Rosa Raudales, Univ. of Conn.
Factors that can impact root health in hydroponic systems include soluble salts, pH, temperature, oxygen level and beneficial microbial activity.
Photo courtesy of Rosa Raudales, Univ. of Conn.

 

 

Maintain optimum root temperatures

While providing the proper air temperature in a greenhouse or controlled environment agriculture system is important, maintaining the optimum root temperature can have a bigger impact on the health and production time of a crop.

“If higher temperatures are maintained in the root zone then the plants are going to lose a lot of energy,” Raudales said. “Temperatures above the optimum in the root zone affect the cell membrane integrity of the roots. A disruption of the cell membranes affects the function of the roots resulting in less nutrient uptake, which affects crop cycles and yields.

“If plants are grown at root temperatures lower than the optimum, the plants grow slower because their metabolism is slower. In the worst case scenario, if freezing temperatures occur then ice crystals could form in the cells resulting in cell leakage and cell disruption.”

Cornell University researchers have conducted studies (http://www.cornellcea.com/attachments/Cornell%20CEA%20Lettuce%20Handbook%20.pdf) to identify the specific temperatures that are ideal for hydroponically-grown vegetables.

“Cornell researchers found the temperature of the nutrient solution had a greater effect than the air temperature,” Raudales said. “Lettuce plants exposed to air temperatures ranging between17ºC (62.6ºF) and 31ºC (87.8ºF) had consistent yields as long as the nutrient solution had a consistent temperature of 24ºC (75.2ºF). This research was done in the 1990s, but it still has application today.

“Cornell researchers did a similar study with spinach and they found the optimum root temperature was 22ºC (72ºF). They tested air temperatures ranging from 16ºC to 33ºC (60.8ºF-91.4ºF) and they found as long as the root temperature was 22ºC, the air temperature could be in that range and plants still produced optimum yields. For tomatoes the optimum root temperature is 25ºC (77ºF).”

Raudales said growers who are producing hydroponic leafy greens like lettuce and spinach have the option of installing a water heater to maintain the optimum root temperatures.

“It is easier and less expensive to heat the nutrient solution than to keep the whole greenhouse warm,” she said. “Heating the greenhouse does not make economic sense, when the research indicates that the temperature of the nutrient solution is a more important factor. If a grower is producing lettuce and spinach, which can tolerate lower air temperatures, it makes sense to run the greenhouses cooler and to install a water heater to adjust the nutrient solution temperature.”

Maintain adequate oxygen levels

Raudales said the dissolved oxygen level in a hydroponic solution needs to be maintained so respiration can occur in the roots.

“When oxygen levels are low in the root zone, the roots do not take up the nutrients required for growth,” she said. “Low oxygen levels cause increased ethylene production in the roots. If there are higher ethylene levels in the roots then the roots start to mature and die. The more oxygen present, the better the nutrient uptake and the better the root system.”

Raudales said there is also an inverse relationship between the oxygen level and solution temperature.

“If the root zone temperature is high, then the oxygen level is going to go down,” she said. “This is another reason why the root zone temperature is so important. The optimum oxygen level should be greater or equal to 6 parts per million of dissolved oxygen in the root zone. Plants should be able to handle 6-10 ppm without any problems.”

Raudales said growers who are using nutrient film technique systems typically don’t need to do any type of aeration. The movement caused by the flow of the water is usually enough to keep the oxygen level high enough in the solution.

Raudales said growers who are using floating rafts usually incorporate some type of oxygen-generating system.

“There are different ways of oxygenating the water,” she said. “One is aerating the water where air is being pumped into the water. Air is not pure oxygen, but it contains enough oxygen for what is needed in the hydroponic solution.”

 

Hydroponic floating raft lettuce
Growers who are using floating rafts usually incorporate some type of oxygen-generating system to ensure the oxygen level is 6 parts per million or higher.

 

 

Raudales said another reason for maintaining a high oxygen level in the hydroponic solution is the effect it can have on pathogenic fungal zoospores.

“If there is more oxygen, then zoospores don’t survive as well,” she said. “Zoospores don’t want completely anaerobic conditions, but they do better in conditions where there is less oxygen.

Pathogens of concern include Phytophthora, Pythium, Thielaviopsis basicola and Xanthomonas.

“Growers should try to keep the oxygen level high. If there are warmer temperatures, then there are lower oxygen levels. When there are lower oxygen levels the plants are not as healthy and more zoospores tend to survive. This is one of the reasons why there tends to be more disease issues during the summer than during the winter.”

Raudales said growers who are using floating rafts should be measuring the oxygen level regularly. Meters for measuring dissolved oxygen look like pH meters and are simple to operate.

Maintain beneficial microbes

Raudales said beneficial microbes are present naturally in water. Commercial products with beneficial microbes can also be incorporated into the hydroponic solution.

“Growers who are using the floating rafts tend to treat the nutrient solution like gold,” she said.

“They don’t want to replace it because they have a solution which is very high in beneficial microbes. Growers can inoculate the nutrient solution with a commercial biocontrol product or they can allow the good microbes to build up with time.

“As long as growers maintain the other parameters at optimum levels, including root temperature, pH, nutrients and oxygen levels, there typically isn’t a problem with diseases. This is very comparable to what happens with plants grown in substrates. The microbes build up naturally in the water just like in a substrate. These microbes feed on the exudates of the roots.

They need carbon sources that they wouldn’t get just from the nutrient solution. The system has to be clean, but it doesn’t have to be clean to the point of having to start with a fresh solution every time a new crop is planted.”

For more: Rosa Raudales, University of Connecticut, Department of Plant Science and Landscape Architecture; (860) 486-6043; rosa.raudales@uconn.edu; http://www.greenhouse.uconn.edu.

David Kuack is a freelance technical writer in Fort Worth, Texas; dkuack@gmail.com.

Posted on

University of Arizona Intensive Course will focus on hydroponic greenhouse tomato production

University of Arizona’s Hydroponic Greenhouse Tomato
Production Intensive Course is a six-day program that focuses on the specifics
of hydroponic greenhouse production.

 

The Hydroponic Greenhouse Tomato Production Intensive Course
will be conducted Jan. 4-9, 2015, at the University of Arizona in Tucson.
Hosted by the university’s Controlled Environment Agriculture Center, the
course will focus primarily on hydroponic greenhouse tomato production. The
course will be taught by hydroponic specialist and professor of plant sciences Pat
Rorabaugh.

 

University
of Arizona hydroponic specialist Pat Rorabaugh
(right)
will be the instructor for the Hydroponic Greenhouse Tomato
Production
Intensive Course, Jan. 4-9, 2015.

 

Course participants will be provided a combination of
classroom lecture and discussion and hands-on learning in a hydroponic
greenhouse. Classroom topics include: greenhouse basics, production costs and
supply sources, plant propagation, crop layout and scheduling, crop
maintenance, plant nutrition, plant protection and food safety. Teaching greenhouse
discussions will cover: crop training and pruning, plant maintenance, plant
pollination, fertilizer preparation, pest identification and control and harvesting
and grading.

Course participants will be provided a combination of
classroom lecture and
discussion and hands-on
learning in a hydroponic greenhouse.

Participants will receive over a dozen hours of training
in a hydroponic greenhouse and over 30 hours of classroom discussion and
lecture that will effectively instruct them on how to hydroponically produce
greenhouse tomatoes. The course will also feature a round table discussion with
greenhouse engineers, where participants can ask experts questions about greenhouse
design and operations. A closing dinner will feature a presentation by
University of Arizona professor Merle Jensen, who will discuss the
current state of controlled environment agriculture.

For more: Aaron
Tevik, University of Arizona, CEA Building, Tucson, Ariz.;
atevik@cals.arizona.edu; (520) 626-9566.

Visit our corporate website at http://www.hortamericas.com