Posted on

What are the benefits of maintaining the optimum substrate oxygen level?

Increasing the oxygen level in the root zone can ensure healthy root growth and can impact crop yields.

Low oxygen levels in the growing substrate can play havoc with the health of both vegetable and ornamental plants. Shalin Khosla, greenhouse vegetable specialist at Ontario Ministry of Agriculture, Food and Rural Affairs in Harrow, Ontario, said a substrate oxygen level below 5 parts per million can have a negative effect on plant growth.

Continue reading What are the benefits of maintaining the optimum substrate oxygen level?

Posted on

Growing microgreens with LED grow lights in Sonora, Mexico

(Español abajo.)

Urban grower Karla Garcia is proud to announce the creation of her new company, Microgreens FLN based in Sonora, Mexico. Karla is a recent graduate with honors and a master’s degree in plant science from the University of Arizona. She is proud of her company’s commitment specializing in microgreens production using an indoor vertical farming strategy. Microgreens are an emerging class of specialty leafy greens and herbs. The crops are harvested when the cotyledons are fully developed and in some cases when the young plants have one true leaf.

Continue reading Growing microgreens with LED grow lights in Sonora, Mexico

Posted on

2017 retail sales of organic fresh produce reach nearly $5 billion

The Organic Produce Network and Nielsen report sales of organic fresh produce items approached $5 billion in 2017, an 8 percent increase from the previous year. Nearly 2 billion pounds of organic produce were sold in grocery stores last year, which is a 10 percent volume increase from 2016.

At U.S. retail stores, sales of organic fresh vegetables were $2.4 billion. Organic fresh fruit sales exceeded $1.6 billion. Sales of nearly $1 billion in organic value-added produce items brought total sales to $4.8 billion in 2017.

In 2017 organic packaged salad was again the leading organic fresh produce item, approaching $1 billion in sales. Packaged salad still accounts for one in five organic dollars.

Topping the sales in organic fruit were berry crops, which saw a 22 percent increase in volume sales. Organic berry sales, which include strawberries, blueberries and blackberries, topped $586 million in 2017.

http://www.organicproducenetwork.com/article/384/nielsen-and-opn-announce-organic-fresh-produce-retail-sales-reach-nearly-5-billion-in-2017

Posted on

Voices of Horticulture: Gene Giacomelli

Moon Farming with Gene Giacomelli

by Steve Millett

Dr. Gene Giacomelli has a dream to grow veggies on the moon. Gene has dedicated his research at the Controlled Environment Agriculture Center (CEAC) at the University of Arizona in Tucson to designing a lunar greenhouse that will enable astronauts to grow food in outer space. As a student of the UofA’s Greenhouse Tomato workshop I was given the opportunity to visit Gene’s Lunar Greenhouse. Walking into the room and first seeing the Lunar Greenhouse gave me goosebumps. Being that close to something that important to the future of space exploration gave me an adrenaline rush of inspiration. Gene’s work and the work of others at NASA and around the US will enable us one day to live on another planet. Thanks to Gene we are one step closer to that dream.

Gene Giacomelli, University of Arizona, Controlled Environment Agriculture Center – CEAC
Gene at Univ. of AZ CEAC

 

Gene on NPR

Gene in movies

Gene on Martian Food

Gene on EarthSky

Gene and Martha Stewart

Posted on

What are the benefits of applying greenhouse shading products?

Sudlac shading products give greenhouse growers of flowers and vegetables the ability to increase and extend production during periods of warm temperatures and high light levels.

High temperatures and high light levels, especially during the summer can have negative effects on ornamental and vegetable crops produced in protected structures, including greenhouses. An economical way for growers to reduce light and temperature levels is by applying shading products to greenhouse glazing materials.

“The application of shading products is related to maximizing the production capacity of the greenhouse,” said Ruben Lensing, area export manager at Sudlac. “Shading products can allow a grower to optimize the climate in the greenhouse, therefore increasing yields without having to invest in more structures. Warm temperatures can impact crop yields, whether a grower is producing flowers or vegetables. If it is too warm, a grower can bring down the temperature by applying a shading product, which can improve crop yields as well as extending production during warmer periods.

“Typically in July and August the greenhouse environment is much too warm in many parts of the U.S. During this time if the grower doesn’t reduce the temperature there will be some crop loss. If the temperature is reduced with shading, a grower may not be able to produce as much as in the spring, but the crop will survive and produce during these warmer months as well as into September and October. The use of shading is all about increasing crop productivity and extending the time of production.”

 

Application for all types of crops

Lensing said all types of growers are using Sudlac shading products.

“Sudlac products are used on all types of greenhouse crops including cut flowers, potted plants and vegetables,” he said. “Sudlac products are also now being used on the production of the newest greenhouse crop—cannabis. “I am visiting some greenhouse growers in the U.S. who are looking to change their crop from flowers to cannabis.

“Since there are more vegetables grown worldwide in greenhouse and protected structures, Sudlac products are used more with vegetable production. That is only because of the size of the worldwide vegetable market.”

 

 

Ruben Lensing, area export manager at Sudlac, said growers can lower greenhouse temperatures by applying a shading product, which can improve crop yields as well as extending production during warmer periods.

 

Lensing said Sudlac products are being used to increase production of both flowers and vegetables.

“With cut flowers, such as freesias, alstroemeria and gerbera, there are more shoots produced,” he said. “This means more flowers are produced per plant. Also, there is less fading of the flower color so the color is more intense.”

For potted plants, Lensing said certain kinds of shading can create more compact plants.

“Using a shade product can lower temperature at high light levels,” he said. “This allows a grower to produce a sturdy compact plant that is higher quality. This may also allow a grower to eliminate or reduce the amount of plant growth regulators that are needed. Applying shade can lower production costs and increase a grower’s return on investment.”

Lensing said the benefit of applying shade for vegetables like tomatoes, peppers and cucumbers, can result in more fruit produced per plant. Also, with some crops the fruit are also heavier.

“Applying a shade product translates to more flowers and fruit per plant which means a higher return for the grower,” he said.

 

Different products for different needs

Sudlac offers six different products for the U.S. market, including three shading products, two light diffusing coatings and one shade removing cleaner. Sudlac shading products can be used on all types of glazing material, including polyethylene, rigid materials including acrylic and polycarbonate, and glass.

 

Eclipse LD

Eclipse LD was the first Sudlac product sold in the United States and is the most widely sold product. LD stands for long duration. It is a protective coating against heat and light.

“When Eclipse LD is applied to the greenhouse it lowers the temperature and reduces the amount of light entering the greenhouse,” Lensing said. “Since Eclipse LD lowers the temperature when it is applied on where a greenhouse is located in the U.S. If the greenhouse is in the southern U.S., it might be applied as early as the end of February or beginning of March. In a more northern climate like Minnesota, Eclipse LD probably would be applied in April. Eclipse LD should be taken off when natural light levels decline, which is usually from September to November in most of the U.S. depending on location. It depends on where the greenhouse is located and climate conditions.”

 

Transpar

Transpar is also a removable protective coating that maintains photosynthetically active radiation (PAR) light levels.

“Transpar is a coating that reflects infrared radiation, which is the light that produces the heat in the greenhouse,” Lensing said. “The PAR light is allowed into the greenhouse.”

 

Warm temperatures can impact crop yields, whether a grower is producing flowers or vegetables.

 

 

Optifuse

Optifuse is a removable coating that lets all the light into the greenhouse, but spreads the light.

“Optifuse diffuses the light,” Lensing said. “It spreads the light in the greenhouse so plants won’t burn. This is very important for flowers, lettuce and other vegetables.

“The advantage of using Optifuse is to allow as much light into the greenhouse as possible. Optifuse can be used in dark areas where there isn’t a lot of sunlight. When the light comes into the greenhouse all of it comes in, but it is spread throughout the greenhouse.

“There is one application exception with Optifuse shading product,” Lensing said. “Optifuse cannot be used on polyethylene film, but it can be used on every other type of glazing.

 

Optifuse IR

Optifuse IR is combines and properties of Optifuse and Transpar.

“Optifuse IR lowers the temperature by reflecting infrared radiation,” Lensing said. “It diffuses the light into the greenhouse like Optifuse and lowers the temperature like Transpar.”

 

Sombrero

Sombrero is an economical whitewash liquid. Like Eclipse it lowers the temperature. It is commonly used in warmer climates including southern California, Florida and Texas. Sombrero is removed by rain or water and no special product has to be applied to remove it from the greenhouse glazing.

 

Topclear

Topclear is a shade removing product used to take off Eclipse LD, Transpar, Optifuse and Optifuse IR.

“It is important to use Topclear to remove these shading compounds,” Lensing said. “In most parts of the U.S. from September through November all of the shade should be removed from the greenhouse so that the glazing is completely clean to optimize plant production during the winter months.”

 


David Kuack is a freelance technical writer in Fort Worth, Texas; dkuack@gmail.com.

Posted on

Over $17 million available for organic research funding

USDA’s National Institute for Food and Agriculture (NIFA) has released its Request for Applications (RFA) for the Organic Agriculture Research and Extension Initiative (OREI). OREI grants provide crucial support to the organic industry by funding research, education, and extension projects to improve and advance organic agriculture.

A total of $17.6 million is expected to be available for projects designated in OREI’s eight legislatively defined purposes (including the biological, physical and social sciences) in fiscal year (FY) 2018. All applications for consideration are to be submitted by March 1, 2018.

NIFA has identified nine priority areas for FY 2018, including a new priority focused specifically on policy. This new priority area is intended for projects that “identify marketing, policy, and other socioeconomic barriers to the expansion of organic agriculture in the United States and develop strategies to address them. Lobbying and advocacy activities do not fit under this priority.”

Posted on

What’s the future of conventional agriculture? Does it include vertical farming?

Leading Japanese indoor ag tech companies to visit the heart of U.S. agricultural research and biotechnology community to attend controlled environment networking event.

If you are involved with the vertical farming or indoor agriculture industries, then you should plan on attending Ag Tech Worlds Collide. Scheduled for Feb. 21, 2018, at North Carolina State University, this event will tackle the big questions currently being addressed in the vertical farming and indoor agriculture industries worldwide.

Urban Ag News and the Japan Plant Factory Association in coordination with the Japanese Ministry of Economy, Trade and Industry are pleased to announce this joint networking event with U.S.-based agricultural organizations and operations. Participating Japanese organizations/companies include: Japan Plant Factory Association, Keystone Technology Inc., Shinnippou 808 Factory, Nihon Advanced Agri Corp., ESPEC MIC Corp. and MIRAI.

 

Presentations focus on CEA impact

Key presentations at this controlled environment agriculture (CEA) event will be made by Dr. Chieri Kubota, professor of controlled environment agriculture at The Ohio State University, and Dr. Ricardo Hernandez, assistant professor in the Department of Horticultural Sciences at North Carolina State University.

Dr. Kubota’s presentation will discuss “Optimizing input and output in controlled environment agriculture.” Dr. Kubota received a PhD. in horticultural engineering and M.S. in horticultural science from Chiba University in Japan. She worked for six years as a faculty member at Chiba University, 16 years in the School of Plant Sciences at the University of Arizona and recently joined the faculty at The Ohio State University. At Chiba University Dr. Kubota studied under and worked with Dr. Toyoki Kozai, one of the most published and greatest minds in indoor agriculture.

Dr. Kubota’s research program focuses on the development of science-based CEA technologies. She has been very active in interdisciplinary collaborations contributing to horticultural crop production under controlled environments. Her research includes value-added CEA crop production, vegetable grafting, hydroponic strawberry production and CEA LED lighting applications.

Dr. Hernandez will discuss “Using vertical farming/indoor ag to support traditional farming. He is a faculty member in the Department of Horticultural Sciences in the area of horticultural energy at North Carolina State University. He has a B.S. in agronomy–crop consulting from New Mexico State University. His M.S. is in entomology–biological control from Texas A&M University. His PhD. is in plant sciences–plant physiology from the University of Arizona. He has a doctoral minor in entrepreneurship from the McGuire Center for Entrepreneurship, Eller School of Business and a minor in ag and biosystems engineering from the University of Arizona.

Dr. Hernandez’s research is focused on making CEA tools and techniques an integral part of sustainable agriculture and horticulture.

 

Event registration, location specifics

Ag Tech Worlds Collide will be held in the York Auditorium of the JC Raulston Arboretum in Raleigh, N.C. Entry to this event is $25 and includes morning coffee service and lunch. Attendance is limited and the event will sell out quickly. Click here to register.

Posted on

Essential Plant Elements

The 17 Essential Plant Elements include nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, boron, chlorine, iron, manganese, zinc, copper, molybdenum, and nickel.  

The non-mineral essential plant elements include hydrogen, oxygen, and carbon. These are either taken up as a gas or water.  

There are 4 elements that are beneficial to promote plant growth but are not considered to be necessary for completion of the plant life cycle. They are silicon, sodium, cobalt, and selenium.

Figure 1 illustrates the essential and beneficial elements location on the periodic table. You can see that there are three clusters of elements within the periodic table.

These elements can be further divided into either macro- or micronutrients based on the relative concentrations typically found in plant tissues. The macronutrients include nitrogen, potassium, calcium, magnesium, phosphorus, and sulfur. The micronutrients are chloride, iron, boron, manganese, zinc, copper, molybdenum, and nickel.

The 17 essential plant elements can be remembered using a clever Mnemonic device that my botany professor Dr. Max Bell taught me in my undergraduate days at Truman State University.  Here is the mnemonic device to remember the 17 essential plant nutrients of higher plants:

  1. HOPKNS Ca Fe is Mighty good and Clean. The owner is my Cu Zn Mo B the Nickel Miner.

The beneficial mineral elements can be remembered as a “Cozy Sinner” (Co Se Si Na).

Figure 1. Periodic table of the elements illustrating the essential and beneficial elements in higher plants.

 

In hydroponics, these mineral elements come from either the fertilizer salts you add to your source water or are already present in your source water. The macronutrients carbon, hydrogen, and oxygen come from either water or gases in the air.

Our Hort Americas Hydroponic fertilizer (9-7-37) was specifically designed to meet the unique needs of hydroponic plant production. Please contact us at to find our why Hort Americas Hydroponic Fertilizer is the perfect fertilizer for your hydroponic system.

Posted on

Voices of Horticulture: Ricardo Hernandez

 

Ricardo’s Journey Illumines Horticulture

El viaje de Ricardo ilumina la horticultura

Ricardo Hernandez’s story is an inspirational journey of immigration, dedication, perseverance, and hard work that continues to shine light on unknown frontiers in horticulture. His story is exceptional.

Ricardo was born in the small town of Valle de Allende, Chihuahua, Mexico (2010 population of 4,185) and grew up in Ciudad Juarez, Chihuahua. His strong family was supportive of his dreams for higher education and encouraged him to pursue his passion.

Ricardo immigrated to the United States of America in 2005 and began his post-graduate education at New Mexico State University where he earned his B.S. degree in Agriculture. Texas A&M was his next destination where he earned a M.S. degree in Biological Control and Integrated Pest Management. Ricardo then joined Dr. Chieri Kubota’s program at the University of Arizona where he excelled at Plant Physiology and Controlled Environment Agriculture with minors in Agriculture and Biosystems Engineering and Entrepreneurship to become Dr. Ricardo Hernandez. This accomplishment is not an easy thing to do.  


La historia de Ricardo Hernández es un viaje inspirador de inmigración, dedicación, perseverancia y trabajo duro que continúa iluminando las fronteras desconocidas de la horticultura. Su historia es excepcional.

Ricardo nació en el pequeño pueblo de Valle de Allende, Chihuahua, México (población 2010 de 4,185) y creció en Ciudad Juárez, Chihuahua. Su fuerte familia apoyó sus sueños de una educación superior y lo animó a perseguir su pasión.

Ricardo emigró a los Estados Unidos de América en 2005 y comenzó su educación de posgrado en la Universidad Estatal de Nuevo México, donde obtuvo su B.S. grado en Agricultura. Texas A & M era su próximo destino donde obtuvo un M.S. Licenciatura en Control Biológico y Manejo Integrado de Plagas. Ricardo luego se unió al programa del Dr. Chieri Kubota en la Universidad de Arizona donde se destacó en Fisiología de Plantas y Agricultura Ambiental Controlada con menores en Agricultura e Ingeniería de Biosistemas y Emprendimiento para convertirse en el Dr. Ricardo Hernández. Este logro no es algo fácil de hacer.



Today, Dr. Ricardo Hernandez is now a U.S. citizen and assistant professor at North Carolina State University, one of the premier horticulture universities in the United States. Ricardo and his wife, Liliana, are teaching their two beautiful children, Samuel and Santiago, the same character traits that have enabled them to become a success in what they do and how they live their lives.

Ricardo’s humble journey is proof of the positive impact of immigration and that hard work and determination will lead to great rewards. We are fortunate that Ricardo took those first steps onto U.S. soil and into our profession.

In this “Voices of Horticulture” segment, Dr. Ricardo Hernandez explains some of his work at North Carolina State University on tomato and cucumber transplant response to light quality.  


Hoy, el Dr. Ricardo Hernández es ahora ciudadano de los Estados Unidos y profesor asistente en la Universidad Estatal de Carolina del Norte, una de las principales universidades de horticultura de los Estados Unidos. Ricardo y su esposa, Liliana, están enseñando a sus dos hermosos hijos, Samuel y Santiago, los mismos rasgos de carácter que les han permitido convertirse en un éxito en lo que hacen y en cómo viven sus vidas.

El viaje humilde de Ricardo es una prueba del impacto positivo de la inmigración y de que el trabajo duro y la determinación llevarán a grandes recompensas. Tenemos la bendición de que Ricardo dio los primeros pasos en el suelo de los Estados Unidos y en nuestra profesión.

En este segmento de “Voces de horticultura”, el Dr. Ricardo Hernández explica parte de su trabajo en la Universidad Estatal de Carolina del Norte sobre la respuesta del trasplante de tomate y pepino a la calidad de la luz.


 

Ricardo’s Sustainable Horticulture Energy
https://hortenergy.cals.ncsu.edu/people/

 

Publications

  1. The Evolution of LEDs http://magazine.greenhousemag.com/article/november-2016/the-evolution-of-leds.aspx
  2. Plant Morphogenesis http://magazine.producegrower.com/article/june-2016/plant-photomorphogenesis.aspx
  3. Far-red and Blue Light Synergistically Mitigate Intumescence Injury of Tomato Plants Grown Under Ultraviolet-deficit Light Environment
  4. Physiological, Morphological, and Energy-use Efficiency Comparisons of LED and HPS Supplemental Lighting for Cucumber Transplant Production

 

LinkedIn
https://www.linkedin.com/in/ricardo-hernández-60540663/

 

Interviewed by Farmer Tyler on UrbanAgNews
http://urbanagnews.com/blog/light-quality-with-farmer-tyler-and-dr-ricardo-hernandez/

 

Posted on

Dissolved oxygen improves plant growth, reduces crop time

Incorporating dissolved oxygen into hydroponic production systems during warmer temperatures can help improve plant growth and reduce crop time.

Trying to grow hydroponic crops like leafy greens can be a real challenge during warmer times of the year. Growers have few options to lower temperatures, including cooling the greenhouse and/or water temperature. Another production technique that is being used by hydroponic growers in the United States and Australia is to introduce dissolved oxygen into the fertilizer tank solution.

“We’ve heard anecdotal reports that increasing dissolved oxygen levels can help prevent some root diseases like Pythium and other root rots,” said Tyler Baras, special projects manager at Hort Americas in Bedford, Texas. “We’ve also heard that increasing dissolved oxygen can possibly improve nutrient uptake and improve overall growth. Another possible benefit with using dissolved oxygen is reducing tip burn on leafy greens.

“These are some of the main issues with growing in warm climates like Texas during the summer. With an increase in water temperature comes a higher disease pressure and chances for tip burn. This has occurred in both nutrient film technique and deep water culture systems.”

Hort Americas conducted trials growing butterhead lettuce, basil and arugula in deep water culture systems at three different levels of dissolved oxygen.
Photos courtesy of Tyler Baras

The optimum water temperature for lettuce is between 65ºF-70ºF. For basil the optimum water temperature is around 75ºF.

Baras said most of the references he has read for adding dissolved oxygen suggest incorporating 4-10 parts per million for leafy greens.

“Most growers that I know are adding between 6-7.5 ppm for leafy greens,” he said. “When growers start to go beyond that rate to reach a higher level they have to use something like compressed oxygen or ozone. These are the main two methods, which are more expensive, for achieving a higher dissolved oxygen rate. Most growers I know are using a less expensive Venturi system or an air pump with air stones to add dissolved oxygen.”

 

Trialing different levels of dissolved oxygen

Baras has been studying the impact different dissolved oxygen levels can have on butterhead lettuce, basil and arugula grown in deep water culture systems. He set up deep water culture systems with three different levels of dissolved oxygen: 2 ppm, 7.5 ppm and 29 ppm.

“We have been tracking growth and how it affects the morphology of the plants,” he said. “The 2 ppm dissolved oxygen rate is what we were able to achieve without doing any type of aeration. This was our control.”

In another system Baras used a Venturi attachment to a small submersible pump that drew in atmospheric air.

“The highest rate of dissolved oxygen that we could achieve using atmospheric air was a maximum of 8.5 ppm,” he said. “The rate hovers between 7.5 to 8.2 ppm, with it usually averaging 7.5 ppm.”

The third system is a high rate of dissolved oxygen that uses compressed oxygen tanks to deliver 29 ppm.

“This system uses nanobubble technology,” he said. “We were using a prototype device that forces oxygen into a solution in really small bubbles so that the oxygen stays in suspension longer instead of falling out. The lowest rate that we could set was 29 ppm. This level of dissolved oxygen is much higher than what most leafy greens growers are targeting.

“A lot of the flowering crop and cannabis growers who are incorporating dissolved oxygen are actually targeting these higher rates. These growers are achieving 20-40 ppm dissolved oxygen. The flower and cannabis crops tend to prefer to be grown on the dry side. With this type of nanobubble dissolved oxygen technology it opens up this production method to crops beyond leafy greens.”

 

Some dramatic results

Baras said he has seen some dramatic effects on plant growth with higher dissolved oxygen rates. At the beginning of the trials during the first month the water temperature in the fertilizer tanks was 80ºF. During the second month the water temperature was between 75ºF-80ºF.

“At 2 ppm the arugula plants were severely stunted and were unsalable,” he said. “At this low rate there were also some severe nutrient deficiencies. At 7.5 ppm the arugula looked normal with slight deficiencies. There weren’t any nutrient issues at the 29 ppm rate and the plants almost doubled in size.”

Baras said even at the low rate of 2 ppm some crops could still be marketable.

“The basil and butterhead lettuce could still pass as marketable at the low 2 ppm rate,” he said. “The plants were very small and it would take several more weeks of production to reach the target weights we were aiming for. At the 7.5 ppm dissolved oxygen rate the plants had fairly normal growth as to what we are used to seeing.

For butterhead lettuce at the 2 ppm rate the heads were smaller and compact. The core of the heads were tighter, but actually had a good shape. At the 7.5 ppm and 29 ppm rates, the heads had similar shapes.

Butterhead lettuce (left to right) grown in 29 ppm, 7.5 ppm and 2 ppm of dissolved oxygen.

For the basil there was an increase in height as the dissolved oxygen level increased. Overall the plant height and size increased at higher dissolved oxygen rates.

“At the 29 ppm rate, the plants looked like the plants at the 7.5 ppm rate, but they were about a week ahead,” Baras said. “Both of these rates produced plants with healthy looking morphology, but the plants receiving 29 ppm dissolved oxygen developed faster. On average all of the crops grown with 29 ppm were at least a week faster to finish to a marketable size.”

 

Differences in root growth

Baras said the roots for the crops in the three rates of dissolved oxygen had different growth patterns.

“The roots in the 2 ppm dissolved oxygen systems were very short and stubby and almost seemed to be retreating from the water,” he said. “The roots remained mostly in the stone wool rooting cubes.”

At the 7.5 ppm dissolved oxygen rate the roots were long and had a lot of lateral branching. Baras said they looked like standard hydroponic roots.

“At the high 29 ppm rate the roots actually had less lateral branching, but they were really white, long and thick,” he said. “But there was less lateral branching. It almost seemed like since there was so much oxygen in the water the plants didn’t need to have as much lateral branching.”

 

Arugula (left to right) grown in 29 ppm, 7.5 ppm and 2 ppm of dissolved oxygen.

Even though there were differences in the root morphology, there was no significant difference in the root weight for all three dissolved oxygen levels. The average root weight for both the 7.5 ppm and 29 ppm rates was 0.8 ounces. The root weight for the 2 ppm rate was about 0.7 ounces.


For more: Hort Americas, (469) 532-2383; info@hortamericas.com; https://hortamericas.com.

David Kuack is a freelance writer in Fort Worth, Texas; dkuack@gmail.com.

Posted on

Nanobubbler generator delivers dissolved oxygen for improved plant growth

Hort Americas is excited to announce that it has been appointed the exclusive distributor of the Moleaer Inc. nanoBoost Nanobubble Generator. The generator delivers a supplementary source of dissolved oxygen that can significantly increase plant growth, improve size uniformity, reduce stress and prevent root diseases under extreme production conditions. It is ideally suited for horticultural applications including hydroponics, greenhouse irrigation and pond management.

 

Real-world application

Hort Americas installed the 50-gallons-per-minute (GPM) nanoBoost in in its hydroponics demonstration greenhouse in Dallas, Texas, to improve the production of leafy greens and culinary herbs during the summer months when warm summer temperatures make production more difficult.

“Our thought was that if we enhance and maintain higher dissolved oxygen levels, we should be able to improve crop health and ultimately improve yield,” said Chris Higgins, general manager at Hort Americas. “We observed dissolved oxygen levels of 29 parts per million in water temperatures of roughly 90ºF. Not only did we achieve our highest level of dissolved oxygen, but our crop yields increased between 20 and 50 percent.”

 

Improving nutrient uptake and plant transpiration

The self-cleaning nanoBoost Nanobubble generator, which has no moving parts, produces oxygen-enriched nanobubbles that efficiently oxygenate an entire body of water and provides a reserve of oxygen encapsulated within the bubbles.

The generator delivers billions of nanobubbles with 200-times the inter-facial surface area when compared to micro bubbles, making them far superior in transporting valuable oxygen to the plants’ root system. The surface of the nanobubbles is negatively charged, attracting nutrient salts and enhancing nutrient uptake. Nanobubbles also increase the mobility of water molecules, potentially improving plant transpiration.

The generator is available in various flow rates and is fully encased in a durable, NEMA4-rated weather-tolerant PVC shell. The unit is self-cleaning and features plug-and-play installation with no moving parts, thus ensuring long-lasting durability with minimal maintenance. The generator can be configured with an integrated pump or retrofitted with a customer’s existing pump to maximize energy efficiency.

Posted on

New York City Council passes urban agriculture bill

New York City Council has passed legislation that requires the Department of City Planning to develop a comprehensive urban agriculture plan that addresses land use policy and other issues to promote the expansion of urban agriculture in the city. The department would be required to deliver this plan to the mayor and the speaker of the council by July 1, 2018.

The website aims to promote the expansion of urban agriculture in the city. The Department of City Planning, the Department of Small Business Services and the Department of Parks and Recreation would prepare content for the website. Agencies responsible for the construction and maintenance of the website would be required to issue a review of the website’s efficacy to the City Council by January 1, 2019.

Some of the issues that the urban agriculture plan would address include: cataloguing existing and potential urban agriculture spaces, classification and prioritization of urban agriculture uses, potential land use policies to promote the expansion of agricultural uses in the city, an analysis of those portions of the zoning resolution, building code, and fire code that merit reconsideration to promote urban agriculture, expanding the availability of healthy food in low-income neighborhoods, the integration of urban agriculture into the city’s conservation and resiliency plans, youth development and education with regard to local food production; direct and indirect job creation and impacts from urban agriculture production and the feasibility of creating an office of urban agriculture.

Posted on

Moleaer™ Launches nanoBoost™, the Most Efficient Oxygen Delivery Mechanism for Commercial Greenhouses

Moleaer announces commercial partnership with Hort Americas

LOS ANGELES

Moleaer Inc., the leading manufacturer of industrial scale nanobubble generators, expands its innovative product line with the new nanoBoost Nanobubble Generator, ideally suited for applications such as hydroponics, pond management, and irrigation.

Moleaer Inc., the leading manufacturer of industrial scale nanobubble generators, expands its innovative product line with the new nanoBoost Nanobubble Generator, ideally suited for applications such as hydroponics, pond management, and irrigation (PRNewsfoto/H2C Group)

Like the existing Moleaer industrial XTB Nanobubble Generator, the compact nanoBoost is a cost-effective and simple-to-install solution to deliver a supplementary source of oxygen-enriched nanobubbles that remain in suspension longer than conventional micro bubbles, efficiently oxygenating the entire body of water and providing a reserve of oxygen encapsulated within the bubbles.

One of the prime beneficiaries of the nanoBoost are commercial greenhouses.  Moleaer’s nanoBoost has been proven to significantly increase plant growth, improve size uniformity, reduce stress and prevent root disease under the most extreme conditions. It delivers billions of nanobubbles with 200-times the inter-facial surface area when compared to micro bubbles, making them far superior in transporting valuable oxygen to a plant’s root system. In addition, the surface of the nanobubbles is negatively charged, attracting nutrient salts and enhancing nutrient uptake. Nanobubbles also increase the mobility of water molecules, potentially improving plant transpiration.

“We installed the 50-GPM nanoBoost in our Dallas-based hydroponics demonstration greenhouse in order to improve production of leafy greens and culinary herbs during the most difficult production season.  Our thought was that if we enhance and maintained higher dissolved oxygen levels, we should be able to improve crop health and ultimately improve yield,” said Chris Higgins, General Manager of Hort Americas.  “We observed DO levels of 29 ppm in water temperatures of roughly 90 degrees Fahrenheit. Not only did we achieve our highest level of DO, but our crop yields increased between 20 and 50%.”

Moleaer is also pleased to announce that it is collaborating with Hort Americas to commercialize Moleaer’s nanobubble generators within the hydroponics industry.  “We are excited to work with Chris and his team at Hort Americas to accelerate the commercialization of our nanobubble technology,” said Nick Dyner, CEO of Moleaer.  “Hort Americas brings a wealth of knowledge in helping growers utilize best-in-class technology to optimize their growing operations, and we are confident that our nanobubble technology will provide growers a new solution to significantly increase yields within their existing facility.”

The nanoBoost is available in various flow rates and are fully encased in a durable, NEMA4-rated weather-tolerant PVC shell. The unit is self-cleaning and features plug-and-play installation with no moving parts, thus ensuring long-lasting durability with minimal maintenance. The generator can be configured with an integrated pump or retrofitted with a customer’s existing pump to maximize energy efficiency.

 

For more information about Moleaer Inc., visit http://www.moleaer.com

Posted on

Voices of Horticulture: Leo Marcelis

Leo Marcelis

Wageningen University

Horticulture & Product Physiology

Droevendaalsesteeg 1
6708 PB Wageningen
Netherlands

leo.marcelis@wur.nl

Featured in Urban Ag News
http://urbanagnews.com/emag/issue-15/

Greenhouse Technology
http://greenhousetechnology.international/interview/urban-farming-will-not-solve-the-problem-of-world-hunger

Wageningen University
http://www.wur.nl/en/Persons/Leo-Marcelis.htm

 

Haifa Group Plant Nutrition Webinar

Google Scholar

LinkedIn

FDCEA

 

 

Posted on

What are the optimum nutrient levels for hydroponic edible crops?

Trials with organic and conventional fertilizers in hydroponic production systems are showing it’s possible to produce edible crops at much lower nutrient levels.

How much different is it growing edible crops organically than it is with conventional production inputs? Hort Americas special projects manager Tyler Baras is studying the differences in trying to grow organically versus using conventional production methods.

Baras has been doing organic production research in a 12,000-square-foot greenhouse in Dallas, Texas, using four deep water culture ponds and a nutrient film technique system. The ponds measure 4-foot by 8-foot and are 10 inches deep. Baras said the ponds are smaller than what would be found in many commercial greenhouse operations, but said the pond size is common in vertical farm setups. Baras has been trialing commercial organic fertilizers including Pre-Empt and an experimental organic fertilizer. The organic fertilizers are being compared with crops grown with Hort Americas 9-7-37 hydroponic fertilizer with calcium nitrate and magnesium sulfate. All of the production systems have also been incorporated with the commercial microbial inoculant TerraBella. Crops being grown in the production systems include Italian basil, green butterhead and red butterhead lettuce.

Trials in Hort Americas demonstration greenhouse are comparing the growth of butterhead lettuce and Italian basil using organic and conventional fertilizers in hydroponic production systems.
Photos courtesy of Tyler Baras

Rethinking optimum nutrient levels

Baras said the deep water culture production results he has gotten with Pre-Empt organic fertilizer have been comparable to the crops grown with the conventional Hort Americas hydroponic fertilizer.

“With Pre-Empt we have been able to match the growth rates of the conventional salt fertilizer,” Baras said. “As a result of the growth rates we have gotten with the organic fertilizer, we have started to question the nutrient recipes that have been recommended for hydroponic edible crop production. Many of the traditional recipes for hydroponic production have a target level of 200 parts per million nitrogen. But we are seeing the same growth rates in the organic fertilizer ponds with 10 ppm nitrogen as the 200 ppm nitrogen conventional fertilizer pond.”

Baras said the electrical conductivity level in the organic fertilizer ponds has been as a low as 0.5 compared to 2.5 in the conventional fertilizer pond and the crops are coming out nearly identical in terms of production time and plant weight.

One difference between the organic- and conventional-grown crops is the time in propagation.

“The crops are finishing at the same time from transplant to harvest time, but we are keeping the plants an extra week in the seedling stage for the organic fertilizer,” Baras said. “We are running the seedlings for two weeks with the conventional fertilizer and about three weeks with the organic fertilizers.

“The organic plugs are started a week earlier, but they are transplanted on the same day as the conventional plugs. We want the roots coming out of the side of the plugs before we transplant them into the ponds. The seedlings are fairly similar in size when they are transplanted into the ponds.”

Plugs grown in organic substrates and fed with an organic fertilizer remain on the propagation bench one week longer than plugs receiving conventional fertilizer to ensure good root growth.

Once the organic and conventional plugs are placed into the ponds, they both spend the same amount of time there until the crops finish.

“The plants are coming out of the ponds with nearly identical weights,” Baras said. “Overall the seed to harvest time is faster with the conventional fertilizer, but that it is because we are able to transplant the plugs into the pond faster because the roots are coming out of the plugs sooner.”

Baras said the plants grown with the organic fertilizers have also shown they can be grown with lower levels of other nutrients. For example, with the conventional fertilizer the nutrient solution may contain 200 ppm potassium and the level is only 12 ppm with the organic fertilizers.

“Aquaponic growers have seen similar situations,” he said. “Some aquaponic growers may be running an EC of 0.7 with a relatively low nutrient level, but they are still seeing good growth.

We are seeing that as well with the organic fertilizers. There are low nutrient levels in the solution, but the crops are coming out the same and the leaf tissue analysis is nearly the same as well.

“For our trials the macronutrient uptake for the plants, even when they are grown in a low fertilizer concentration like 0.5 EC, they are still able to pull what they need out of the solution. Leaf sample analyses of butterhead lettuce and Italian basil grown in 0.5 EC organic fertilizer vs. 2.5 EC conventional fertilizer, most of the macronutrient levels in the leaves are very similar. It appears the plants are doing a good job of regulating the nutrient uptake to get what they need.”

 

Aging fertilizer solutions

Baras said letting the organic fertilizer solutions age in the ponds may have an impact on the availability of nutrients for some crops. The aging of the fertilizer solutions also has an impact on increasing the microbial population.

“We have definitely seen some differences in plant growth,” he said. “Our first crops of butterhead lettuce and basil did very well with Pre-Empt organic fertilizer. However, one of the other organic fertilizers we trialed grew a quality first crop of lettuce, but not the best looking basil. As we continued the trial with our second and third crops, the basil grown with the other organic fertilizer started doing much better. It appears the organic solutions in the ponds may need to age until the nutrients reach adequate levels.

“This is what we were seeing in a 9-month old Pre-Empt pond vs. a 2-month old Pre-Empt pond. A lot of nutrients have accumulated in the 9-month pond and are approaching the recommended nutrient levels that would be found in a conventional fertilizer system. Organic fertilizers like Pre-Empt don’t have a lot of magnesium in them. However, when the fertilizer is run in a pond system for 9 months the magnesium level rises and approaches what would be considered a conventional fertilizer target level for magnesium.”

Aging of the fertilizer solution also has had an impact on the root growth of the crops.

“When we compare how the roots look visually in the 9-month solution vs. the 2-month solution, the roots in the 9-month solution look much healthier,”Baras said. “The roots are very white, are longer and look really healthy and well-developed. There are also more roots on plants in the 9-month system.

“The root color is also significantly different. In the 2-month solution the roots look healthy, but there is some browning. They don’t have that crisp white look.”

 

Aging of the fertilizer solution can impact root growth. Plants (left) in a 9-month old organic fertilizer solution had more roots that looked healthy and well-developed compared to the root system of plants in a 2-month old organic fertilizer solution.

Rethinking optimum pH levels

Baras said he has been able to produce healthy crops in a pH range from as low as 4 up to 6.5.

“For hydroponic leafy greens the recommended pH ranges from 5.5 to 6.5,” he said. “We have basil and butterhead lettuce growing very well in organic systems at a pH of 4. On the other side of the pH range, I’ve heard of aquaponic growers growing these crops at a pH up to 7 without any problems. Based on our trial results some of the conventional recommendations for hydroponics for both pH and nutrient levels might need to be revisited.

“One of the biggest issues I see with hydroponic growers is overcompensating. For instance, they feel that they need to be constantly watching the pH. They may set up monitoring and dosing systems to ensure the pH doesn’t go below 6 or 5.5. They are investing in extra equipment because they think they need to keep the pH precisely in this range. It may be a case that the plants will do well outside this range.”

 

Impact on crop timing

Baras said one factor that could affect the optimum pH and nutrient range is the light level.

“If a grower is providing supplemental light, then the optimum pH and nutrient range may be different,” he said. “With the trials we are conducting we aren’t that far off from what most hydroponic growers are targeting for growth rates. Thirty-five days is a target number for a lot of lettuce growers. We have done 35-day crops. We want to be able to grow an organic crop in the same amount of time as a crop grown with conventional fertilizers.”

 


For more: Hort Americas, (469) 532-2383; info@hortamericas.com; https://hortamericas.com.

 

David Kuack is a freelance writer in Fort Worth, Texas; dkuack@gmail.com.

Posted on

Hort Americas attends 2017 Philly Indoor-Ag Con

Philadelphia Academy of Fine Arts, Philadelphia, PA

Focusing on community, innovation, and technology like A.I, The Philly Indoor-Ag Con brought together some of the leading experts in these areas to discuss Indoor Agriculture and how it is beginning to change the landscape of cities around the world. Philadelphia may be one of the most primed cities to welcome indoor and vertical farms alike with support from individuals like Mayor Jim Kenney who spoke at the event.

The conference was divided into 4 sessions covering CEA opportunity to develop local communities, how technology is changing the indoor farm business model, the coming impact of LED lighting, and AI in indoor ag. Each session had 3 speakers with a Q&A panel at the end of every session. Some thought provoking questions even had the panelists looking at things from new angles such as Mark Benoit of Bright Farms’ question: “What about thinking in terms of mouths fed too, instead of just jobs created?” I personally believe that “mouths fed” or “healthy calories consumed” will be a very important analytic in the future as automated approaches become more accessible due to advances in technology.

A common theme during the conference was the need to unite and standardize within this new industry. I agree with this central idea as we need to treat ourselves like any agriculture industry which uses standardization to decrease waste and increase profits. Eric Stein, one of the panelists, is looking to build a Center of Excellence for indoor agriculture to combat this issue. (If you are interested in participating in a brief survey to assist with the project please visit kennettindoorag.info)

One of the key messages from the conferences was the idea that technology is affecting business at a rapid rate, especially within CEA. Whether we are talking about the leaps and bounds made by LED every year or the tools of the grower becoming more of a key to success, Hort Americas is able to offer technical support that the emerging field will need to understand this ever changing source of light. As Xandar Yango of San’an Bio stated “LED will drive this industry.”

Esteban Macias of The Coalition for Sustainable Organics posed the question “How do you disrupt before you get disrupted?” I believe that the more we come together in a transparent manner for conferences and events like Philly Ag-con the more we can ensure that we will be the disrupters, not the disrupted. At Hort Americas we aim to not only have a high standard of quality and service in everything we do, but aim to supply the disruptive growers with products, tools, technology and supporting technical information they need to be innovative and maintain profitability; these products range from lighting to hydroponic substrates to traditional and organic fertilizer. Working together to address and fill needs, we should insure that they continue to grow well into the future.

Posted on

Breeding crops for controlled environment production

Controlled environment agriculture growers have been trying to fit a square peg into a round hole by growing field crops in indoor environments. This is changing as research tries to match plant genetics with the production environment.

During this year’s International Congress on Controlled Environment Agriculture (ICCEA) in Panama City, Panama, University of Florida horticulture professor and keynote speaker Kevin Folta discussed the overlooked reality that food crop varieties have not been bred for indoor controlled environment production.

“One of the limitations of controlled environment agriculture (CEA) is that the conditions do not match the genetics,” Folta said. “Plants being grown in CEA environments were actually developed for field production. There are a lot of opportunities that go unrealized by growing plants in a controlled environment. It’s like asking Chihuahuas to pull a dog sled. Plants that were bred for one application are expected to perform under very different applications. The genetics don’t match.”

Research has begun to develop the next generation of plants with the potential to develop different products using the same set of genetics by changing the environment.

Creating the next generation of plants

Folta said research has begun to develop the next generation of plants with the potential to develop different products using the same set of genetics by changing the environment.

“By flipping a switch and varying the light spectrum we could change green leaves to purple or have the plants accumulate specific flavors or textures or nutraceutical compounds,” he said. “That is all very realistic. This is like being able to shine a different light spectrum on a Chihuahua and turning it into an Alaskan malamute or a dachshund. A plant’s body, its composition, its chemicals, its secondary metabolites could be altered by changing the light environment. We need plants that are ready to do that. We need to identify or create those genetics.

“We are exposing plants to different light spectra and evaluating how the plants behave and perform. Then we will work with plant breeders to develop the next varieties.”

Varying the light spectrum has the potential to change leaf colors and textures and to have plants accumulate specific flavors or nutraceutical compounds.
Photos courtesy of Kevin Folta, University of Florida

Need for more industry involvement

Folta said the companies that are developing and manufacturing the lights for CEA production should become more involved with the development of plants grown in these environments.

“The lighting companies should be working with the university researchers and plant breeders,” he said. “The lighting companies should be financing the development of proprietary varieties. Unfortunately that hasn’t been an area of interest for the lighting companies. They want to make and sell lights. They forget the seed. The seed is a much more complicated machine.

“The lighting companies should be able to say to the growers here are the grow lights we are offering and here are the seeds that grow best under them. That opens up recurring revenue for the lighting companies. It behooves the lighting companies to focus on identifying plants that perform best with their products. It’s like saying that a Ford engine does best with a Motorcraft oil filter. It’s manufacturer’s optimized matching parts.”

Folta said plants are the most complicated part of matching the genetics with the environment and the part that people worry least about.

“It doesn’t matter whether the breeding company or the lighting company takes the initiative to develop the genetics,” he said. “This is going to happen whether it’s private plant breeders, universities or technology companies. This is another niche to create new genetics. You’ll see people filling this void.”

Researchers are learning that green, far red and UV light have important roles to play in controlled environment agriculture plant production.

Limiting, changing the production environment

Even technology companies like Panasonic, Toshiba and Fujitsu are finding opportunities in controlled environment agriculture.

“These types of companies will develop the genetics or will find the genetics that work well in CEA environments,” Folta said. “For now the field genetics will continue to be put in artificial conditions and the indoor environment will be reshaped to accommodate the plants. What should be done is finding or developing plants for these energy-efficient, artificial conditions that are sufficient to support growth. Research needs to be done to determine how to maximize output or yields with fewer photons of light or colors of light. Research is going to focus on economic viability. I expect the pharmaceutical companies will get involved in this research.

“My interests are much more about food and how we create the next generation of profitable growers and higher nutrient crops that are more readily available for consumers. That’s what gets me fired up.”

While matching the genetics to fit the environment is important, Folta said researchers also need to be looking at limiting the environment.

“At the same time that we are looking at the breeding and genetics, we are also looking at how we can deliver shorter pulses of light that still maintain the same output,” he said. “We have cut energy application by 50-80 percent and grown comparable products. The viability of these systems has come from people who have focused on the diminishing return of light efficiency. What they need to work on is the plant efficiency. That is something that is extremely viable.”

Folta said all of the research he has been focused on is with small format, high value crops, including lettuces, sprouts and microgreens.

“Our university does not have the facilities to conduct the necessary experiments,” he said. “But we are partnering with others to do that. We will have good access to larger spaces in the upcoming months. It’s less likely that this type of production would be done with crops that take more space like melons. We are looking at plants where the vegetative portions of the plants are eaten. If you consider a head of lettuce, every photon that is invested results in the plant structure. With a crop like tomatoes, 80-90 percent of the biomass is being thrown away or composted.

Kevin Folta at the University of Florida is interested in how to create the next generation of profitable growers and higher nutrient crops that are more readily available to consumers.

“Growing the plants in shorter production times, shorter supply chains, better postharvest quality because of shorter supply chains, possibly lower costs, a lower carbon footprint and access to local markets, these are the issues I want to address. I see this being done with lettuces, microgreens and herbs such as cilantro and basil. Not so much with corn or melons where a huge amount of energy is invested in a relative small return in terms of calories. These types of crops do better using the sun.”

Folta said 15 years ago people thought the idea of light recipes and changing the spectrum was a crazy and senseless idea.

“Researchers and light manufacturers thought mixtures of red and blue light were all that was needed to grow plants in controlled environments, so there wasn’t any concern about doing anything different,” he said. “Now people understand that green, far red and UV light have important roles and that light quality should change throughout the day. With that in mind, it gives us some flexibility when it comes to changing the production environment, which is a really good thing.”

 


For more: Kevin Folta, University of Florida, Horticultural Sciences Department, Gainesville, FL 32611; kfolta@ufl.edu; http://www.hos.ufl.edu/faculty/kmfolta.

David Kuack is a freelance technical writer in Fort Worth, Texas; dkuack@gmail.com.

Posted on

2017 AVF Summit in Washington, D.C

By Kyle Barnett

The AVF Summit in Washington D.C was a great event to get a very eclectic group of people together that all want the same thing: to feed people and grow food sustainably as we move into a future that is rapidly growing and urbanizing.

University of the District of Columbia

Recent grads, farmers, politicians, and tech driven individuals all had a chance to discuss the future of vertical farming and urban farming including topics such as policy, certification, zoning, and the politics behind the future landscape of agriculture. The summit went into a lot of the bureaucracy surrounding urban and vertical farming and what it truly means to have a well thought out plan before you start growing.

Association for vertical farming

The day-long summit was separated into multiple sessions with presenters from across the urban farming and tech industries, including but not limited to Sonny​ ​Ramaswamy​ ​(The National Institute of Food and Agriculture), Dr​ ​Bob​ ​Whitaker​ ​(Produce Marketing Association), and Roberta​ ​Anderson​ ​(Global G.A.P.). Most sessions were accompanied by a Q&A panel of industry professionals, each having a unique perspective on the specific topic of that presentation. Starting with a focus on policy, followed by Standardization & Certification, and finishing the day with the politics behind The Farm Bill, the summit painted a broad picture of what the future farming landscape may look like.

Much like the summit, the future of farming will be a combination of many different subjects and professions, with different skills, opinions and knowledge uniquely coming together to create the way we grow and eat. Hort Americas is proud to support this diverse industry. Working with every type of farm from conventional to vertical, our goal is to assist the industry with not only superior equipment and supplies, but with technical expertise and hands on experience.

For more information on the Association for Vertical Farming, click here.

Posted on

AmericanHort technology tour to visit Hort Americas hydroponic research greenhouse

Tour of Hort Americas research and demonstration greenhouse in Dallas will show growers different hydroponic production systems for various vegetable crops.

Growers of hydroponic vegetables or those considering starting growing vegetables hydroponically should plan on attending the AmericanHort Production Technology Conference. Scheduled for Oct. 9-11 in Dallas, the conference begins with a Technology in Action Tour on Oct. 9 which will visit three local production operations: Hort Americas research and demonstration greenhouse, Seville Farms and Southwest Nursery.

 

All things hydroponic

Hort Americas, a horticulture and agriculture wholesale supply company, has retrofitted a 12,000-square-foot floriculture greenhouse for the hydroponic production of vegetable crops. Tyler Baras, who is the special projects manager at Hort Americas, is overseeing the trialing of five different production systems along with the testing of potential products for the company’s online catalog. The production systems include: nutrient film technique (NFT), deep water culture floating raft, a vertical hydroponic tower system, a flood-and-drain vertical rack system and a new capillary mat manufactured in Europe. The greenhouse is being used to grow a wide variety of lettuces, leafy greens, herbs and microgreens.

During the AmericanHort Technology in Action Tour on Oct. 9, Tyler Baras, special projects manager at Hort Americas, will be talking about the five different hydroponic production systems he is trialing.
Photos courtesy of Tyler Baras

The NFT system uses a new channel design. Baras said the narrower channels allow for the aging of crops without having to physically move plants from nursery channels to finishing channels.

Hort America’s main floating raft deep water system is an in-house custom design that measures 32-feet by 28-feet.

“We have tried using a Venturi system to incorporate oxygen, but for the last two months we have been doing trials with compressed liquid oxygen,” Baras said. “We have been doing trials to see how plants respond to increased levels of dissolved oxygen. This deep water system hasn’t been flushed in over a year.

“We have been managing the nutrient solution with water tests and individual salts. Instead of using a standard N-P-K fertilizer like we have been using in the other production systems, we have really focused on water tests and making nutrient adjustments based on those tests. We have been trying to keep the nutrients within a target range and trying to run the system for as long as possible without having to flush any of the nutrient system. We are testing for all of the essential nutrients. We are also looking at sodium chloride levels and seeing how those accumulate. Also, we are tracking what essential nutrients accumulate over time and how we can adjust the fertilizer being added to accommodate the natural accumulation in the system.”

In addition to trialing crops in different hydroponic production systems, Tyler Baras is also studying a variety of crops grown with conventional and organic substrates and fertilizers.

 

Baras is also studying how the water source can contribute to the nutrient level.

“We are considering how source water may be a limitation to applying this no-flush technique,” he said. “Our source water is municipal water, but it has a high sulfur content of about 44 parts per million. So we are looking at cutting out all sulfur inputs. We are learning the challenges of trying to manage a no flush system.”

In addition to the main deep water system, Baras said tour attendees will also see several smaller deep water culture systems.

“In these smaller deep water culture systems we will be showing the use of three different organic fertilizers where we are comparing the growth between them,” he said. “We will also be showing a smaller scale deep water culture system receiving aeration compared to one with no aeration.”

 

Vertical production systems

Another hydroponic system that Baras is working with is a vertical tower commonly used by smaller growers.

“We have a lot of customers who use this system so we decided to install one in the greenhouse so we could look at some of the issues that they are dealing with,” he said. “We also were looking to answer some of the questions that our customers had about using the system. An example is can this system be used to grow organically? We’ve done both organic and conventional trials with this system.

“We’ve also been looking at what crops perform best in this vertical system. We’ve done a lot of variety trials as well as with the other systems we’ve installed.”

Hort Americas is also trialing a vertical Growrack from Growtainer.

“This is a flood-and-drain vertical rack system,” Baras said. “The rack has three levels, but it could be expanded. The rack has a 2-foot by 5-foot footprint. We have equipped it with GE LED lights. This would be the type of system used in a vertical farm setup.”

Although the Growrack hydroponic system can be used to grow full size crops, Tyler Baras is using it primarily for seedling propagation.

Baras said the Growrack system, which is set up in the greenhouse, has done well in warm conditions because its water reservoir is below the rack.

“The reservoir is usually stored underneath the racks so it is in shade,” he said. “The water isn’t always in the trays so it doesn’t collect the heat from the trays. It works well in warm climates.”

Although Baras has grown full size crops in the Growrack, it is being used now primarily for seedling propagation.

“The focus of the system is how it has enabled us to cut back on the amount of space that is needed for propagation,” he said. “We can easily grow enough seedlings in this system for a 10,000-square foot greenhouse.

“The system is also being used by a Central Market store in Dallas to finish crops for its Growtainer farm. We helped consult on the management of the system and showed store officials how it could grow crops from start to finish in the same Growracks. The store is growing fully mature butterhead lettuce and basil in the system. This system can definitely work in indoor vertical farms.”

Baras said he has grown both organically and conventionally with the Growrack system.

“We have done organic seedling propagation in it,” he said. “We have used a variety of conventional and organics substrates and fertilizers with it.”

 

LED studies

In addition to trialing LED lights vs. natural light for greenhouse seedling propagation and crop staging, Baras said he is also looking at using LEDs supplemental light throughout the production of butterhead lettuce in the floating raft system.

“We are looking at how LED light affects leaf texture and plant morphology of butterhead lettuce,” he said. We are trying supplemental lighting during the summer. We are pulling shade so the light isn’t very intense. It appears that intense light can lead to tip burn that damages the plants leading to a poor quality crop. So we pull shade cloth and then run a prototype high-output LED grow light provided by GE for almost 20 hours. We deliver a low intensity of light over a longer period so we can provide the plants the light they need without stressing them. We are trying to improve the quality by adding LED light in order to produce more compact growth that is associated with LEDs.

“Under greenhouse shade cloth the lettuce leaves look fragile. We are trying to grow the lettuce to hit a certain weight. If the plants are grown under shade they look fairly large and floppy and the head doesn’t have the right density at its core. By using the LEDs we can produce the more traditional morphology where the plants have a dense core. The leaves aren’t floppy and the plants look more like traditional butterhead should look.”

 

Matching plants and production systems

Baras said he is trialing a wide range of crops in all of the production systems he is using.

“Primarily we are focused on lettuce and basil, but we are trialing a lot of varieties,” he said. “We definitely see some systems are capable of growing some varieties that other systems are not. We want to be able to recommend what varieties grow best in what systems. We are preparing a book based on our research that will include an entire section on strategies for how to use these production systems. We will provide example situations in the book discussing location, climate, market, what crops are being requested by that market and how to use that information to determine what production system is most appropriate.

“We are looking at primarily butterhead, romaine and oakleaf lettuce and 20 different basil varieties. We are also doing trials with arugula, spinach, cilantro, kale, chard, Asian greens and microgreens. We are doing an extensive study of herb varieties. There are also some unusual crops like stevia, wasabi arugula, celeriac and sorrel. We are determining all of these plants growth habits in the different production systems. This information will be in the book along with the details and nuances of growing each crop.”

A vertical hydroponic tower commonly used by smaller growers has been installed to answer some of the questions that Hort Americas customers have about using the system.

Based on the trial results, Baras said the book will provide details on each plant variety and its performance in each system.

“The book will provide information on the growth a grower should expect in different environments based on the amount of light and temperature,” he said. “The book will offer projected production numbers a grower should be able to reach. These will be realistic targets for each of the production systems we have studied.”

 


For more: Hort Americas, (469) 532-2383; https://hortamericas.com.

 

David Kuack is a freelance technical writer in Fort Worth, Texas; dkuack@gmail.com.