Posted on

Breeding crops for controlled environment production

Controlled environment agriculture growers have been trying to fit a square peg into a round hole by growing field crops in indoor environments. This is changing as research tries to match plant genetics with the production environment.

During this year’s International Congress on Controlled Environment Agriculture (ICCEA) in Panama City, Panama, University of Florida horticulture professor and keynote speaker Kevin Folta discussed the overlooked reality that food crop varieties have not been bred for indoor controlled environment production.

“One of the limitations of controlled environment agriculture (CEA) is that the conditions do not match the genetics,” Folta said. “Plants being grown in CEA environments were actually developed for field production. There are a lot of opportunities that go unrealized by growing plants in a controlled environment. It’s like asking Chihuahuas to pull a dog sled. Plants that were bred for one application are expected to perform under very different applications. The genetics don’t match.”

Research has begun to develop the next generation of plants with the potential to develop different products using the same set of genetics by changing the environment.

Creating the next generation of plants

Folta said research has begun to develop the next generation of plants with the potential to develop different products using the same set of genetics by changing the environment.

“By flipping a switch and varying the light spectrum we could change green leaves to purple or have the plants accumulate specific flavors or textures or nutraceutical compounds,” he said. “That is all very realistic. This is like being able to shine a different light spectrum on a Chihuahua and turning it into an Alaskan malamute or a dachshund. A plant’s body, its composition, its chemicals, its secondary metabolites could be altered by changing the light environment. We need plants that are ready to do that. We need to identify or create those genetics.

“We are exposing plants to different light spectra and evaluating how the plants behave and perform. Then we will work with plant breeders to develop the next varieties.”

Varying the light spectrum has the potential to change leaf colors and textures and to have plants accumulate specific flavors or nutraceutical compounds.
Photos courtesy of Kevin Folta, University of Florida

Need for more industry involvement

Folta said the companies that are developing and manufacturing the lights for CEA production should become more involved with the development of plants grown in these environments.

“The lighting companies should be working with the university researchers and plant breeders,” he said. “The lighting companies should be financing the development of proprietary varieties. Unfortunately that hasn’t been an area of interest for the lighting companies. They want to make and sell lights. They forget the seed. The seed is a much more complicated machine.

“The lighting companies should be able to say to the growers here are the grow lights we are offering and here are the seeds that grow best under them. That opens up recurring revenue for the lighting companies. It behooves the lighting companies to focus on identifying plants that perform best with their products. It’s like saying that a Ford engine does best with a Motorcraft oil filter. It’s manufacturer’s optimized matching parts.”

Folta said plants are the most complicated part of matching the genetics with the environment and the part that people worry least about.

“It doesn’t matter whether the breeding company or the lighting company takes the initiative to develop the genetics,” he said. “This is going to happen whether it’s private plant breeders, universities or technology companies. This is another niche to create new genetics. You’ll see people filling this void.”

Researchers are learning that green, far red and UV light have important roles to play in controlled environment agriculture plant production.

Limiting, changing the production environment

Even technology companies like Panasonic, Toshiba and Fujitsu are finding opportunities in controlled environment agriculture.

“These types of companies will develop the genetics or will find the genetics that work well in CEA environments,” Folta said. “For now the field genetics will continue to be put in artificial conditions and the indoor environment will be reshaped to accommodate the plants. What should be done is finding or developing plants for these energy-efficient, artificial conditions that are sufficient to support growth. Research needs to be done to determine how to maximize output or yields with fewer photons of light or colors of light. Research is going to focus on economic viability. I expect the pharmaceutical companies will get involved in this research.

“My interests are much more about food and how we create the next generation of profitable growers and higher nutrient crops that are more readily available for consumers. That’s what gets me fired up.”

While matching the genetics to fit the environment is important, Folta said researchers also need to be looking at limiting the environment.

“At the same time that we are looking at the breeding and genetics, we are also looking at how we can deliver shorter pulses of light that still maintain the same output,” he said. “We have cut energy application by 50-80 percent and grown comparable products. The viability of these systems has come from people who have focused on the diminishing return of light efficiency. What they need to work on is the plant efficiency. That is something that is extremely viable.”

Folta said all of the research he has been focused on is with small format, high value crops, including lettuces, sprouts and microgreens.

“Our university does not have the facilities to conduct the necessary experiments,” he said. “But we are partnering with others to do that. We will have good access to larger spaces in the upcoming months. It’s less likely that this type of production would be done with crops that take more space like melons. We are looking at plants where the vegetative portions of the plants are eaten. If you consider a head of lettuce, every photon that is invested results in the plant structure. With a crop like tomatoes, 80-90 percent of the biomass is being thrown away or composted.

Kevin Folta at the University of Florida is interested in how to create the next generation of profitable growers and higher nutrient crops that are more readily available to consumers.

“Growing the plants in shorter production times, shorter supply chains, better postharvest quality because of shorter supply chains, possibly lower costs, a lower carbon footprint and access to local markets, these are the issues I want to address. I see this being done with lettuces, microgreens and herbs such as cilantro and basil. Not so much with corn or melons where a huge amount of energy is invested in a relative small return in terms of calories. These types of crops do better using the sun.”

Folta said 15 years ago people thought the idea of light recipes and changing the spectrum was a crazy and senseless idea.

“Researchers and light manufacturers thought mixtures of red and blue light were all that was needed to grow plants in controlled environments, so there wasn’t any concern about doing anything different,” he said. “Now people understand that green, far red and UV light have important roles and that light quality should change throughout the day. With that in mind, it gives us some flexibility when it comes to changing the production environment, which is a really good thing.”


For more: Kevin Folta, University of Florida, Horticultural Sciences Department, Gainesville, FL 32611;;

David Kuack is a freelance technical writer in Fort Worth, Texas;

Posted on

Greenhouse Production to Continue Increasing in Mexico

Read this Exectuive Summary from the USDA

Executive Summary: During the week of April 13, 2010, FAS/Mexico visited protected agricultural facilities in the states of Jalisco and Sinaloa. Production under these houses has transformed Mexican agriculture and continues to adapt unique technologies depending on weather conditions and economic factors. Protected agricultural production uses installations of low to medium technology and ranges from hard plastic to anti-aphid netting (depending on the definition of greenhouse or shade house). A few use hydroponic systems, but most use drip irrigation without heating systems or CO2. Half of the area devoted to protected agriculture uses shade houses since this type of technology can adapt to the weather more efficiently. Most of the growers agreed that due to the latitude of Mexico and warmer climates in producing areas, shade houses adapt better (especially considering shade houses are typically cheaper). According to producers, weather conditions dictate what kind of technology is needed to guarantee optimal conditions of growth and quality production while following food safety production regulations and therefore, more producers are moving to shade houses. Whether through greenhouses or shade houses, production under protected agriculture continues to grow rapidly. The percentage of area planted using protected agriculture has increased nearly 40 percent over the past three years. The United States is the primary market for products grown under protected agriculture, but growers continue to export larger quantities each year to other markets.

Please email us at for additional information.

Visit our corporate website at

Posted on

2010 Commercial Horticulture Trade Show Schedule

Calendar of Events held in 2010

2010– Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
January ’10
12-14 Jan
Sival Vine & Wine Angers France
13-14 Jan
Dan-Gar-Tek Gardening & Garden Equipment Odense Denmark
13-14 Jan
Agro-Mashov Agri-Horticulture Tel Aviv Israel
13-16 Jan
Agriflanders Agri-Horticulture Ghent Belgium
14-16 Jan
TPIE Tropical Flowers & Plants Ft Lauderdale USA
15-24 Jan
Intl Green Week Agri-Horticulture Berlin Germany
20-22 Jan
Mid-America Trade Show Horticulture Chicago USA
21-23 Jan
Viveralia Horticulture Alicante Spain
26-29 Jan
Horticulture Essen Germany
February ’10
2-4 Feb
Agri- Horticulture
Kiev Ukraine
3-6 Feb
Expo Agro Sinaloa
Agri- Horticulture
Culiacan Mexico
3-7 Feb
Agri- Horticulture
Thessaloniki Greece
3-7 Feb
Northwest Flower Show
Seattle USA
3-5 Feb
Agri- Horticulture
Kiev Ukraine
3-5 Feb
Fruit Logistica
Fruit packaging & transport
Berlin Germany
4-7 Feb
Agri- Horticulture
Verona Italy
9-13 Feb
Zaragoza Spain
10-12 Feb
Landscape Industry
Moscow Russia
11-14 Feb
Horticultural Contracting
Poznan Poland
16-18 Feb
Angers France
19-21 Feb
Padova Italy
19-21 Feb
Fruchtwelt Bodensee
Friedricshafen Netherlands
23-26 Feb
Landscape & Garden
Kiev Ukraine
23-27 Feb
Agri- Horticulture
Plovdiv Bulgaria
24-28 Feb
Holland Flowers Festival
Bovenkarspel Spain
26-28 Feb
Poznan Poland
28 Feb
Leipzig Germany
March ’10
2-3 Mar
Florall Floriculture Ghent Belgium
2-5 Mar
Smagua Water Zaragoza Spain
3-7 Mar
Agro Agriculture Braga Portugal
3-9 Mar
Garten Munchen Horticulture Munich Germany
3-6 Mar
Intl Agricultural Fair Agri- Horticulture Mersin Turkey
6-14 Mar
Ortogiardino Horticulture Pordenone Italy
8-10 Mar
Horticulture Dubai UAE
9-11 Mar
World Floral Expo Floriculture Miami USA
11-14 Mar
Expojardim Horticulture Batalha Portugal
12-14 Mar
Agrotech Agriculture Kieice Poland
17-19 Mar
Horticulture Nairobi Kenya
17-21 Mar
Giardina Gardening Zurich Switzerland
18-20 Mar
Freshantalya Horticulture Antalta Turkey
19-21 Mar
Hortikultura Horticulture Belgrade Serbia
19-21 Mar
Flora Horticulture Celje Slovenia
21-25 Mar
Techagro Agri- Horticulture Brno Czech Rep.
24-28 Mar
San Fransisco Flower & Garden Retail Horticulture San Fransisco USA
24-28 Mar
Flower (spring) Horticulture Plovdiv Bulgaria
26-28 Mar
Gardenex & Growtech
Johannesburg South Africa
29-31 Mar
AGRAme Agri- Horticulture Dubai UAE
30 Mar-
2 Apr
Swasana Agri- Horticulture Amman Jordan
April ’10
8-11 Apr
Almaty Kazakhstan
14-16 Apr
Flowers & Hortec Ukraine
Kiev Ukraine
14-17 Apr
Shanghai China
15-18 Apr
Riga Agro
Agri- Horticulture
Riga Latvia
17-25 Apr
Cincinnati Flower & Garden Show
Cincinatti USA
May ’10
1-5 May
Sitevi Mercosur Horticulture Mendoza Argentina
4-6 May
National Hardware Show Horticulture Las Vegas USA
18-20 May
Journees des Colections Horticulture Senlis France
18-21 May
Nampo Agri- Horticulture Bothaville South Africa
21-24 May
Das Furstiche Gartenfest Horticulture Fulda Germany
30 May-2 Jun
Iran Agro Agri- Horticulture Tehran Iran
June ’10
8-10 Jun
Intl Australia Show Agri- Horticulture Swan Hill Australia
10-12 Jun
Agritex Agri- Horticulture Damascus Syria
16-18 Jun
Hortitec Horticulture Sao Paulo Brazil
15-19 Jun
Agro Kiev Agri- Horticulture Kiev Ukraine
22-25 Jun
Super Floral Show Floriculture Miami Beach USA
30 Jun-2 Jul
Oga Horticulture Koppigen Switzerland
July ’10
10-13 Jul
Ohio Short Course Horticulture Columbus USA
August ’10
5-7 Aug
SNA Horticulture Atlanta USA
11-14 Aug
Sibflower Horticulture Novosibirsk Russia
17-19 Aug
Independent Garden Centre Show Horticulture Chicago USA
19-22 Aug
Agrokomplex Agri- Horticulture Ufa Russia
25-28 Aug
Plantarium Horticulture Boskoop Netherlands
September ’10
6-8 Sep
Koln Germany
7-9 Sep
Agri- Horticulture
Ondes France
8-10 Sep
Asia Fruit Logistica
Hong Kong China
13-16 Sep
Polagra Food
Food & Food Processing
Poznan Poland
15-18 Sep
Urban Greenspace
Nuremburg Germany
22-25 Sep
Quito Ecuador
23-25 Sep
The Landscape Show
Orlando USA
23-26 Sep
Sao Paulo Brazil
October ’10
Amsterdam Netherlands
7-11 Oct
Hortikomlex Horticulture Olomouc Czech Republic
November ’10
4-6 Nov
Bolzano Italy
10-14 Nov
Agri- Horticulture
Bologna Italy
December ’10
5-7 Dec
Irrigation Show
Anaheim USA
Antalya Turkey

Orginized by:

Visit our corporate website at
Posted on

Climate Minder is one of the new products Hort Americas is working with.  Climate Minder is a wireless environment control greenhouse computer system.

Read about them at Earth Times.,983164.shtml

Visit our corporate website at