How do I protect my crop from direct sunlight and heat?

By Karla Garcia, Hort Americas Technical Services

A greenhouse is a structure used to protect our crop and extend our production window. Once we decide to invest in a greenhouse structure we must think in ways to obtain the maximum benefit from it. There are plenty of options for greenhouse covers. But as a grower, what should I be looking for? Photosynthesis is the main process related to crop yield. Therefore we should always be looking to optimize our greenhouse environment to promote photosynthesis.

Continue reading How do I protect my crop from direct sunlight and heat?

Are you looking for an economical, effective way to incorporate dissolved oxygen into your irrigation water?

Incorporating air or oxygen into irrigation water using nanobubbles can improve crop yields and reduce susceptibility to disease pathogens.

What started out as a way of making wastewater treatment systems more efficient with oxygen enrichment has expanded to how nanobubble aeration technology can improve production of agricultural crops. Moleaer Inc. in Torrance, Calif., filed a patent on nanobubble aeration technology in 2016 with the intention of using it as a way to deliver gas in a number of different applications.

Continue reading Are you looking for an economical, effective way to incorporate dissolved oxygen into your irrigation water?

Substrate trials look to assist hydroponic growers avoid propagation-related issues

Substrate trials in Hort Americas’ research greenhouse are looking at conventional and organic propagation substrates along with different irrigation strategies for producing healthy starter plugs for hydroponic production systems.

Hort Americas has retrofitted a 12,000-square-foot greenhouse in Dallas, Texas, for the purpose of studying edible crop production in a variety of hydroponic production systems. The greenhouse is also being used to demonstrate products offered in the company’s online catalog.

Tyler Baras, who is the company’s special projects manager, is overseeing the trialing of conventional and organic substrates in different production systems.

Tyler Baras, special projects manager at Hort Americas, is overseeing the trialing of leafy greens and herbs propagated in conventional and organic substrates. The seedlings are transplanted into a deep water culture, NFT or vertical tower production system.
Photos courtesy of Tyler Baras, Hort Americas

“The trials I am focusing on are organic substrates vs. conventional substrates,” Baras said. “I’m primarily using stonewool or rockwool as the conventional propagation substrate. I am also starting to trial some loose substrates, including peat and perlite.

“The seedlings are never moved into another substrate. The seed is sown into plugs and then the rooted seedlings are moved into a deep water culture, NFT (nutrient film technique), or vertical tower production system. The plugs are really only useful for the first two weeks in propagation. Then it is really about getting the roots to grow outside the plugs so the roots grow directly in the water.”

For the organic production systems, Baras is working primarily with expandable coco plugs. He has also started working with some organic loose substrates including coco peat and perlite.

For the substrate studies Baras is working with two standard hydroponic crops, basil and lettuce, primarily butterhead lettuce.

“When I’m testing the lettuce I use either raw or pelleted seed,” he said. “With basil it’s all raw seed. Basil tends to germinate relatively easily, whether the seed is planted into a dibbled hole or sown on top of the substrate.”

Focused on irrigation strategies

A primary objective of the substrate trials is to determine the best irrigation strategies for both organic and conventional substrates.

“This is probably more important with some of the organic substrates than the conventional substrates because the organic substrates tend to hold more water,” Baras said. “One of the big challenges that organic hydroponic growers run into is overwatering their plugs because coco holds more water than conventional substrate plugs that growers are used to. Coco plugs hold more water than stonewool, phenolic foam and polymer-based peat plugs. These other plugs dry out faster than coco plugs.”

closed-bottom-organic-plug-hydroponic-substrates-growing-system
For the substrate trials, rooted seedling plugs are finished in a deep water culture, NFT (nutrient film technique) or vertical tower production system.

Baras said growers who are moving from conventional to organic production tend to use the same irrigation techniques they employed with their conventional propagation program.
“The growers will continue to irrigate the plugs a couple times per day,” he said. “With a lot of the organic plugs, when the seed is sown, they only need to be irrigated once every three days. If the plugs are overirrigated the roots don’t have an incentive to search out the water when they are planted into the production system. The search for water is what drives the seedling roots down to the bottom and out of the plugs.

“The goal of planting into plugs is to have the seedling roots grow outside of the plugs into the water of the deep water culture or NFT system. If the plugs are overwatered as young seedlings, the roots don’t make it down to the bottom of the plugs so it takes longer to start the seedlings and sometimes they just end up rotting because the plugs remain too wet.”

Type of irrigation system

In addition to looking at the irrigation frequency of plugs during propagation, Baras is studying the impact of different methods of irrigation during propagation, including overhead and subirrigation.

“When deciding whether to use overhead or subirrigation, it depends on whether raw or pelleted seed is being sown,” he said. “If pelleted seed is going to be used, a lot of times it’s advantageous to use overhead irrigation because it helps to dissolve the coating surrounding the seed. This helps to ensure the seed has better contact with the substrate. Sometimes it’s almost a little easier to get good germination with subirrigation if raw seed is used because of the direct contact with the substrate.

hydroponic-production-system-hydroponic-herbs-grodan
Growers need to avoid overwatering young seedling plugs or their roots may not make it down to the bottom of the plugs, which could delay transplanting into the production system.

“Smaller indoor growers often use subirrigation for germination. A lot of the large growers, especially those coming from the ornamental plant side such as bedding plants, usually have overhead irrigation systems installed. These growers have propagation areas set up with overhead irrigation, which can be used to start their hydroponic vegetable crops.”

Baras said most indoor warehouse growers are not going to be using watering wands or overhead irrigation in their operations.

“Most of the warehouse growers will be using subirrigation, such as flood tables,” he said. “For them it is going to be important that they select the right kind of seed to get good germination. They may have to try other techniques like using a deeper dibble or covering the seed with some kind of loose organic substrate such as perlite or vermiculite. Growers using overhead irrigation can usually sow pelleted seed without having to dibble the substrate.

“Many growers tend to have issues when they are using pelleted bibb lettuce seed with subirrigation. We are looking at ways of increasing the germination rate using dibbling with the pelleted seed or increasing the dibble size or covering the seed.”

Baras said growers who are using automation, including mechanized seeders and dibblers, prefer to use pelleted seed.

“With pelleted seed it’s easier to be more precise so that there is only one seed planted per plug cell,” he said. “I have seen automation used with raw basil seed. I have also seen organic production done where automation was used just to dibble the plug trays. Dibbling seems to be one of the biggest factors when it comes to getting good even germination.

 

Need for good seed-substrate contact

Baras said occasionally with tightly packed coco plugs, if the seed is not pushed down into the plug the emerging radicle may have issues penetrating the substrate.

“This helps push the radicle down so it contacts the substrate and establishes more easily,” he said. “When subirrigation is used it can be advantageous to cover the seed with vermiculite or just brush the top of the coco plug after the seed is planted to get some coverage of the seed.

“What usually affects the way that coco plugs work is the size of the coco particles. There is really fine coco. There is coco fiber, which can be mixed into the plug to help with aeration and increase drainage. We are looking at various plugs with some increased fiber content trying to aerate the plugs in order to speed up the drainage.”

hydroponic-cilantro-grodan-rockwool-deep-water-culture-grodan-ao-hydroponic-production-system-herbs
Stonewool or rockwool is the primary conventional propagation substrate in the trials. Other loose substrates, including peat and perlite, are also starting to be trialed.

Baras is also looking at using loose substrates in different ratios in plugs and then transplanting them into deep water culture, NFT, and vertical tower systems.

“One of the issues with hydroponic systems and loose substrates is these substrates can enter the production system and clog up the irrigation lines,” he said. “The trick is trying to avoid having any loose substrate enter the system. We are looking at using loose substrates and allowing the seedlings to establish longer in the plug cell during propagation before transplanting them into the production system. This enables the seedlings to develop a larger root system, which can prevent loose substrate from falling into the system.”

 

For more: Hort Americas, (469) 532-2383; https://hortamericas.com.

David Kuack is a freelance technical writer in Fort Worth, Texas; dkuack@gmail.com.

 

Products being used in greenhouse trials

Fertilizer trials look at leafy greens, herb growth in hydroponic production systems

Early results from fertilizer trials in Hort Americas’ research greenhouse show knowing the levels of nutrients in fertilizer solutions can go a long way in avoiding problems with deficiencies and toxicities.

Hort Americas has retrofitted a 12,000-square-foot greenhouse in Dallas, Texas, for the purpose of studying edible crop production in a variety of hydroponic production systems. The greenhouse is also being used to demonstrate products offered in the company’s online catalog.

Tyler Baras, who is the company’s special projects manager, is overseeing the trialing of leafy greens and herbs in five different production systems.

“We’ve got a deep water culture or raft system using Hort Americas’ fertilizer blend with calcium nitrate and magnesium sulfate,” Baras said. “We are using that same nutrient mix in a nutrient film technique (NFT) system and a capillary mat system.

“I’m using Terra Genesis organic fertilizer in a vertical grow tower. I’m also using the same organic fertilizer for all of the seedling propagation in a flood-and-drain vertical rack.”

Tyler Baras, special projects manager at Hort Americas, is overseeing the trialing of leafy greens and herbs in different production systems, including deep water culture and nutrient film technique. Photos courtesy of Tyler Baras, Hort Americas
Tyler Baras, special projects manager at Hort Americas, is overseeing the trialing of leafy greens and herbs in different production systems, including deep water culture and nutrient film technique.
Photos courtesy of Tyler Baras, Hort Americas

Baras said the fertilizer recipe he is using in the deep water culture and NFT systems is based on general recommendations from Cornell University and the University of Arizona for leafy greens crop production.

Differences in nutrient levels

The deep water culture system has been running for three months. The water reservoir for the system is 8,000 gallons.

“Even if water evaporates, since it is such a large body of water, the electrical conductivity (EC) doesn’t really move much,” Baras said. “The EC has been very stable during the three months it has been operating. The reading has barely moved.”

The first trial with the NFT system, which has a reservoir of about 140 gallons, lasted for three months.

“Every week I added an additional 40 gallons of water on average to the NFT reservoir,” Baras said. “The water is evaporating and the salts are accumulating a lot faster in the NFT reservoir than in the deep water culture system. Because the NFT system has a smaller water reservoir, the quicker evaporation rate and the water replacement in the reservoir, has caused the EC to shift a lot more.”

One of the goals of the fertilizer trials is to see what salts are accumulating in the NFT system and to see how long the system can run before it has to be flushed.
One of the goals of the fertilizer trials is to see what salts are accumulating in the NFT system and to see how long the system can run before it has to be flushed.

Baras said even with the changes in nutrient levels all of the plants have been performing well.

“I haven’t seen any nutrient deficiencies or toxicities even as the fertilizer recipe has shifted over time. We have been trialing a wide range of crops, including butterhead and romaine lettuces, kale, spring mixes and basil. I’m trialing a lot of crops to figure out when these crops start to be impacted by possibly too much salt accumulation. I haven’t seen anything yet that is alarming.

“One of the things that I have seen over the years working with fertilizers is how wide the acceptable range is for plants to grow well. Between the NFT and deep water culture, the NFT is using half the nitrogen and the plants are performing very similarly. There are recommendations for EC, but none of these fertilizer levels are set. I have some systems that have 20 parts per million phosphorus and some that have 50 ppm and the plants look the same. Most general recommendations say 40-50 ppm. I’ll have some solutions that have 3 ppm iron and others that have 6 ppm iron. It is interesting to see how wide the range is for a lot of these nutrients and the crops are performing the same.”

During the three months that the deep water culture system has been running the electrical conductivity (EC) has been very stable with plants showing no signs of nutrient deficiencies or toxicities.
During the three months that the deep water culture system has been running the electrical conductivity (EC) has been very stable with plants showing no signs of nutrient deficiencies or toxicities.

Baras said he has seen a slowing of plant growth in the NFT system.

“I’m not seeing any deficiencies or toxicities, but the crops have slowed down about a week over the deep water culture,” he said. “Depending on the crop, it’s taking a week longer to reach either the plants’ salable weight or height.

“The slowing in growth could be related to the nutrients. This could be useful information for growers. If they are checking the EC, which may have been 2.3 when a crop was started, if there is a slowing of growth, growers may want to have a water test done. The test could show that the amount of nutrients might be changing.”

Identifying what makes up the EC

During the three months that Baras had been running the NFT system he never flushed the system.

“All that I’ve done with the NFT system is add water and additional fertilizer to maintain a targeted EC,” he said. “One of the goals of the trials is to see what ions are accumulating in the system and to see how long I can run the system before it has to be flushed. When I started the target EC was 2.2-2.3. I still achieved the target EC at three months, but the composition of what was actually in the water changed.

“Originally the NFT fertilizer solution contained about 185 parts per million nitrogen. At the end of the trial the EC was the same but there was only 108 ppm nitrogen in the solution. The calcium concentration was originally 250 ppm and ended at 338 ppm. Sulphur was originally at 80 ppm and rose to 250 ppm. Nutrients have accumulated as the water evaporated. Solely going by the EC meter reading doesn’t tell the full story of what is in that water. The EC of the fertilizer solution that I started with is the same as the EC for the fertilizer solution three months later. The difference is the ions that are making up that ending EC.”

Herb production with organic fertilizer

Baras is growing a variety of cut herbs in vertical grow towers. The plants are fertilized with Terra Genesis, a molasses-based organic fertilizer. He said Hort Americas has been hearing from tower growers who are interested in trying to grow organically.

“What we are seeing is the organic fertilizer solution can change a lot over time,” he said. “The fertilizer tank solution matures as time goes on. With the organic fertilizer, the nutrients tend to balance out as the solution is run longer.

“Our city water contains calcium and some magnesium. These elements are actually the nutrients that the organic fertilizer is slightly low in. So as I run the system longer, through the addition of city water, I actually start to see an accumulation of both calcium and magnesium, which actually helps balance out the total fertilizer recipe. The balance of the nutrients has improved over time.

A variety of cut herbs are being grown in vertical grow towers and fertilized with Terra Genesis, a molasses-based organic fertilizer.
A variety of cut herbs are being grown in vertical grow towers and fertilized with Terra Genesis, a molasses-based organic fertilizer.

The pH was fairly unstable as it seemed to be going through several biological waves. It was moving rapidly between high and low. As I run the tank solution longer the total alkalinity has increased, which has stabilized it. The biological activity has also started to stabilize. The pH has stabilized in the upper 5 range. For the plants grown organically I have seen deficiencies pop up. The deficiencies were reduced as the fertilizer tank solution ran longer. The deficiencies appear to have balanced out.”

Baras said one noticeable difference between the NFT, deep water and vertical grow towers is how much slower the plants grow in the towers.

“I don’t know what to contribute the slower growth to yet,” he said. “It could be trying to determine the best fertilizer rate for the fertilizer. It could be the crop selection, because most of the crops in the towers are different from what I’m growing in the NFT and deep water culture.

“I’m going to start a deep water culture and NFT trial using organic fertilizer. I’ll have three different organic production systems running simultaneously so I will be able to compare the plant growth in each system. I’ll also be able to compare the growth of the same crops grown with organic or conventional fertilizers.”

Controlling biofilm, disease pathogens

Baras said one of the issues that can arise with using organic fertilizer is the development of biofilm in the irrigation lines that can cause emitters to clog.

“I am incorporating a product called TerraBella, which contains beneficial microbes,” he said. “These microbes help mobilize certain nutrients, like phosphorus, which can promote the formation of biofilms. This biofilm buildup is usually more of a problem with high water temperatures.

“About every six weeks I add a booster application of the beneficial microbes depending on the production system. The deep water culture system has a larger reservoir so I am not replacing evaporated water as often. For the other productions systems, like the NFT and grow towers, where I am replacing the water, I am incorporating the beneficials more often. For these systems, the fresh city water that is added dilutes the fertilizer solution. Also, there is chlorine in the city water that possibly could negatively impact some of the beneficial microbes.

For more: Hort Americas, (469) 532-2383; https://hortamericas.com.

David Kuack is a freelance technical writer in Fort Worth, Texas; dkuack@gmail.com.

 

Products being used in greenhouse trials

 

 

Hort Americas retrofits greenhouse for trialing hydroponic growing systems, products

Hort Americas’ special projects manager Tyler Baras is using a 12,000-square-foot hydroponic greenhouse to teach company staff and customers what it takes to economically grow leafy greens and herbs.

Tyler Baras is a well-traveled grower. He has worked in Florida and Colorado growing hydroponic greenhouse vegetables, including organic crops. He is now taking the knowledge and experience he has gained from those growing operations and putting it to use in a 12,000-square-foot demonstration and research greenhouse in Dallas, Texas.

Baras, who is the special projects manager at Hort Americas, is overseeing the trialing of leafy greens and herbs in five different production systems along with the testing of potential products for the company’s online catalog.

“Chris Higgins, the general manager at Hort Americas, brought me to the greenhouse and asked if I would be interested in running a demonstration and research facility,” Baras said. “He was also interested in collecting data and writing a book about leafy greens production.

“After I agreed to accept the position, I drew up blueprints of the greenhouse, preparing a design of the production systems, writing a budget and proposals on how it was going to look, and how much it was going to cost to operate, including projected sales from the produce that was grown.”

Tyler Baras, special projects manager at Hort Americas, is overseeing the trialing of leafy greens and herbs in five different production systems. Photos courtesy of Tyler Baras, Hort Americas
Tyler Baras, special projects manager at Hort Americas, is overseeing the trialing of leafy greens and herbs in five different hydroponic production systems.
Photos courtesy of Tyler Baras, Hort Americas

The retrofitted greenhouse is located behind a grocery store and prominent Dallas garden center. The grocery store and garden center will allow Baras to test his projected budgets and produce sales.

“The greenhouse was originally built for growing bedding and flowering plants,” Baras said. “It was built with passive ventilation and was not designed for leafy greens production. We had to make some major modifications. Renovations included leveling the floor, adding a vestibule air lock, upgrading the electrical system, installing evaporative cooling pads, insect screening and landscape fabric, and upgrading the motors for the shade system along with installing new shade cloth. We have been growing in the greenhouse since September.”

Hort Americas, which is a horticulture and agriculture wholesale supply company, provided the materials for the retrofit along with the hydroponic production systems that Baras will be using. The production systems include a capillary mat system, a deep water culture floating raft system, a nutrient film technique (NFT) system, a hydroponic tower system and grow racks. Hort Americas has also provided a variety of equipment and products, including substrates, fertilizers, LED lights and other products it offers to its wholesale customers.

Collecting, disseminating production data

Dallas was chosen for the research location because it is one of the hardest places to grow hydroponic leafy greens. Baras will be trialing primarily leafy greens, including a variety of lettuces (bibb and Romaine), kale, bok choy, basil and other herbs.

“We believe that if leafy greens can be grown here then they can be grown nearly anywhere by everyone,” he said. “Year-round production here is difficult. We know that we will be able to grow during the fall, winter and spring. The tricky part is going to come during the summer when there are high temperatures and high humidity. The project will take a minimum of a year to collect the data.”

Baras said he will be collecting a lot of data including: cost per plant size, how much does it cost over the production cycle to operate each system and the labor costs involved with operating each system.

The 12,000-square-foot demonstration and research greenhouse contains five different production systems including a deep water culture floating raft system.
The 12,000-square-foot demonstration and research greenhouse contains five different production systems including a deep water culture floating raft system.

“The goal is to collect data that can be used by everyone,” he said. “We are going to collect data that includes the total light delivered. If growers in more northern latitudes are dealing with lower light, they can look at the light levels we maintained in the greenhouse and reach those same levels using supplemental light so that they can mimic the exact same conditions.

“The data collected will be available to whoever has an interest in reading about it. This will enable growers to be knowledgeable about making decisions about these production systems and operating them. They will also have access to some real world baseline data from trials so they will know if they are achieving the proper metrics. For example, we will share the data of how long it took to grow a certain size head of lettuce or a certain weight of basil using specific inputs. Growers will be able to look at real world environmental conditions under which a crop was grown.”

Preliminary results

Baras said based on initial production results what makes most financial sense at this time is growing basil and lettuce.

“Our initial metrics from the data that we have collected have been good,” he said. “We are producing 8- to10-ounce heads of bibb lettuce in 38 days and we are harvesting commercial size sleeved basil in 26 days from seed.

“Most commercial standards for lettuce in the U.S. are between 6 and 10 ounces. For basil there is a wide range in regards to the standard size for weight. Generally it is done by size or by what fills up a 10-inch tall sleeve. We have been able to fill a 10-inch sleeve and make it look really good.”

Preliminary production results include harvesting commercial size sleeved basil in 26 days from seed.
Preliminary production results include harvesting commercial size sleeved basil in 26 days from seed.

Having experienced a warmer than normal October, Baras said the water temperature in most of the production systems has been 85ºF or warmer.

“Generally the water temperature for most hydroponic crops is between 65ºF-70ºF,” he said. “The water temperature here is definitely warm, but we are still having really great growth. So far it is looking like we can grow a crop during the summer. But we haven’t gone through a full summer yet and that is going to be the real test.
Baras said they want to try to avoid chilling the water and will only use this production technique as the last resort.”

“We are trying to find ways around having to chill the water, including increasing the level of dissolved oxygen in the water using a variety of methods. This includes using Venturi aerators, and if needed, injecting liquid oxygen. These methods are less costly than running chillers. Chillers can be expensive and they use a lot of energy.
“We really want to find a model that is going to be acceptable to small scale growers. We are trying to keep the inputs to a minimum and still achieve our production goals.”

Teaching and trialing

Baras said the greenhouse has already been used for onsite training.

“That is one of our main goals with the site,” he said. “We want to be able to bring in people and provide them with hands-on training, both our customers and the Hort Americas staff. For example, we want to be able to show them how to blend fertilizer, what the process looks like for moving seedlings through a hydroponic system, how to measure light levels in a greenhouse and best pest control methods.

“We want to be able to assist customers who are starting to build a greenhouse and are looking to install hydroponic equipment. The greenhouse will enable them to see what is involved before they make any purchases.”

Dallas Grown
The greenhouse will be used to provide training to Hort Americas’ customers and staff, as well as the trialing of new products.

The greenhouse will also be used for trialing new products.

“Companies often approach Hort Americas about carrying their products, the greenhouse will enable us to put them through real world trials before they’re put in our online catalog,” Baras said. “Some of the products we plan to trial include dosing systems, monitoring systems for greenhouse environmental control and meters for measuring pH and EC. We are open to looking at other equipment and other automation technology.”

For more: Hort Americas, (469) 532-2383; https://hortamericas.com.

David Kuack is a freelance technical writer in Fort Worth, Texas; dkuack@gmail.com.

 

Products being used in greenhouse trials

Colorado State University’s new horticulture center will focus on research with LEDs

An agreement between Colorado State University and Philips Lighting to equip its new 27,000-square-foot horticulture center with LEDs will put the focus on using the lights for improving ornamental and vegetable plant production.

When officials at Colorado State University went looking for property to build a new football stadium they didn’t have to look far. They decided that the land on which the 65-year-old W.D. Holley Plant Environment Research Center resided was the perfect location for the new stadium.

“The old horticulture facility, which had been built in 1949, was considered a hot property by school officials,” said Steve Newman, who is greenhouse crops extension specialist and professor of floriculture. “To replace the old site, the university provided the department with a new $7.5 million 27,000-square-foot research and teaching facility. There is also a 3-acre outdoor area for plant trials.

“The horticulture center was built in eight months. The university facilities team that I worked with to design and build the center was awesome.”

Greenhouse specs

The horticulture center’s new greenhouse is a Nexus Vail model frame which is covered with Thermaglas polycarbonate. It is equipped with Ludvig Svensson retractable heat curtains and Wadsworth Control vents, Modine Effinity 93 natural gas unit heaters and American Coolair fan boxes. The control technology is all Wadsworth Control Systems.

 

Colorado State University’s 65-year-old W.D. Holley Plant Environment Research Center has been replaced with a new $7.5 million 27,000- square-foot research and teaching facility.
Colorado State University’s 65-year-old W.D. Holley Plant Environment Research Center has been replaced with a new $7.5 million 27,000-square-foot research and teaching facility.

 

The 21,000-square-foot greenhouse is divided into six bays. All of the bays are connected by a ventilation corridor that has a 20-foot high gutter line. One bay will contain a Crop King NFT trough system consisting of six modules. The other half of the bay will be equipped with a traditional raft culture set up that has six 5-foot by 10-foot rafts.

“I’m a hard core supporter of Colorado companies,” Newman said. “We are also trying to make the greenhouse as energy efficient as we can.”

Perfect timing

In December 2014, Ron DeKok, North America director of business development, Philips Horticulture LED Solutions, visited Newman to discuss supporting LED research at Colorado State.

“Ron visited me on the same day I was given permission to talk about the budget for the center,” Newman said. “The timing was perfect. He asked me what kind of LED research CSU wanted to do and I asked him how committed Philips was to supporting LED research at the university. He said let’s equip the facility with Philips lighting and we’ll do research projects together.

“The greenhouse is being equipped with the latest Philips horticulture LED fixtures, including top lighting, interlighting and flowering lamps. One house will have suspended interlighting modules for high wire vegetables. We are looking at being able to do all kinds of ornamental and vegetable plant research using different combinations of the fixtures.”

Crops to be studied

Newman said it hasn’t been determined yet how much of the greenhouse space will be dedicated to ornamental and vegetables crops.

 

Steve Newman, who is Colorado State’s greenhouse crops extension specialist and professor of floriculture, said the new horticulture center will be used for research, teaching and training.
Steve Newman, who is Colorado State’s greenhouse crops extension specialist and professor of floriculture, said the new horticulture center will be used for research, teaching and training.

 

“I expect the research is going to be about 60 percent ornamentals and 40 percent vegetables, but that could change,” he said. “Initially the greenhouse vegetable production will be used primarily for teaching and demonstration. We will get into the vegetable research later.

“Our primary focus initially is going to be on ornamental plug production and reducing plant bench time after transplanting. This includes whether we can grow better quality plugs using LEDs with less plant growth regulators. We will be looking at root development under LED lights, trying to increase rooting and production efficiency. This includes trying to improve rooting of stage 4 tissue culture propagules coming out of overseas production.”

Newman said fellow researcher and horticulture professor Bill Bauerle is planning to use the greenhouse’s corridor to study hops production using LEDs.

“Northern Colorado is becoming a central location for craft breweries,” Newman said. “There is a lot of interest in locally grown hops for the craft breweries.

“The 20-foot high ventilation corridor is ideal for growing hops. We are redesigning and reconfiguring to install the LED interlighting in order to get good vegetative growth. The hops plants will receive natural light from above and the LED interlighting between the rows. The local craft brewers are very interested in the hops research that we are planning to do.”

Collaborative research

Newman said that Philips has some of its own research agenda items that it would like to study in the horticulture center.

“The research that the company wants to do is not that different than the research that we want to do,” he said. “What Philips is planning to look at fits in with everything else that we are doing in many ways. The company will be making some specific requests. The company will be funding those project directly just like any other research program.

“The Philips research team I’m working with is very grower-oriented. The company is interested in finding out how many LED lights does it take to produce a bedding plant crop more

efficiently. How LEDs can be used to produce better quality plants. Meanwhile we will be doing our own research taking advantage of the lights. The hops research was not an agenda item for the company four months ago. Bauerle went to company officials and said let’s do this hops research and they agreed that it was worth doing.”

 

Philips Lighting has some of its own research agenda items that it would like to study in Colorado State’s horticulture center, but the research is not much different than what university scientists want to do.
Philips Lighting has some of its own research items that it would like to study in Colorado State’s horticulture center, but the research is not much different than what university scientists want to do.

 

Newman said that Philips is interested in looking at vegetable production for the warehouse farming market, which it refers to as its city farming program.

“Unfortunately we don’t have the type of facility set up to do the warehouse style growing on site,” Newman said. “I would like to see us go into that type of production eventually. Initially with our vegetable crops we will look at biomass production. We will be putting in NFT lettuce trials.

“We also want to study nutraceutical compounds, including vitamins, and if LEDs can increase the production of nutraceuticals in vegetables. I am working with my colleagues in the horticulture and food science departments looking at the mouth feel in regards to high quality lettuce production. We will also probably look at tomatoes to increase production efficiency, plant yield, and lycopene development in the fruit. We will probably start looking to do that research in the fall.”

Future plans

Newman said he is in negotiations with the university’s dining services department to produce vegetables for its dining centers.

“I am in negotiations with dining services, which is looking to start vegan salad bars in the dining halls,” he said. “Dining services wants to put in salad bars with as much produce as possible grown in Colorado. They would like to have a certain percentage of that produce be CSU student grown. We are going to redo our student farm to try to accomplish that during the growing season. We will also be trying to grow as much of the leafy greens in this new facility to provide to the dining services’ salad bars.

“I am also working very closely with a university environmental hygiene staff person. We have to be sure that we are in compliance so that whatever produce we sell to the dining halls is as safe as it needs to be. We have to set up a good agricultural practices (GAP) plan and to review the guidelines of the Food Safety Modernization Act that just went into effect. The students who are growing the produce have to be trained in the exact practices they need to follow to deliver quality, safe food. The students have to be taught the proper ways of growing and handling food from the greenhouse to the table. All of the practices that we have to incorporate are the same as if we were going to sell the produce to a retail grocery store.”

 

For more: Steve Newman, Colorado State University, Department of Horticulture and Landscape Architecture; (970) 491-7118; Steven.Newman@ColoState.edu.

David Kuack is a freelance technical writer in Fort Worth, Texas; dkuack@gmail.com.

Photos courtesy of Steve Newman, Colo. St. Univ.